Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on com...Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on comparison between the theories. In this work, comparison between the theories with finite element analysis is done using the PLAXIS software. The comparative results show that in terms of distribution and magnitude of active earth pressure, RANKINE's theory possesses the highest match to the PLAXIS analysis. Parametric studies were also done to study the responses of active earth pressure distribution to varying parameters Increasing soil friction angle and wall friction causes decrease in active earth pressure. In contrast, active earth pressure increases with increasing soil unit weight and height of wall. RANK/NE's theory has the highest compatibility to finite element analysis among all theories, and utilization of this theory leads to proficient retaining wall design.展开更多
Roughness elements are various in a mountain area; they include gravel and ground surface vegetation that often result in surface friction drag to resist overland flows. The variation and characteristics of flow resis...Roughness elements are various in a mountain area; they include gravel and ground surface vegetation that often result in surface friction drag to resist overland flows. The variation and characteristics of flow resistance strongly impact the overland flow process and watershed floods. In view of the universal existence of natural vegetation, such as Chlorophytum malayense(CM) or Ophiopogon bodinieri(OB), and the sand-gravel bed of the river channel, it is important to understand the role of different types of roughness elements in flow resistance. This study was performed to investigate and compare through flume experiments the behaviors of overland flow resistance by the reaction of multi-scale configuration of different roughness elements. The result showed that the resistance coefficient gradually reduced versus the increase of flow rate in unit width and tended to be a constant when q = 3.0 l/s.m, Fr = 1.0, and Re = 4000 for slopes of 6 to 10 degrees. The gap of the vegetated rough bed and the gravel rough bed is limited to the same as the gap of the two types of vegetation, CM and OB. It was noted that the vegetation contributed to the increase in form resistance negatively and may lead to the mean resistance on decrease. To classify the flow pattern, the laminar flows were described by DarcyWeisbach's equation. In the study the f-Re equation of vegetated bed was developed with f ?5000 Re.The friction coefficient for laminar flows can be regarded as the critical value for identifying the transformation point of the flow pattern.展开更多
Due to the variation of the blade cross-section, the deformation stress and strain of the workpiece keep changing during the rolling process and the conventional rolling theory is no longer valid. The complexity and d...Due to the variation of the blade cross-section, the deformation stress and strain of the workpiece keep changing during the rolling process and the conventional rolling theory is no longer valid. The complexity and diversity of the blade cross-section determine it impossible to establish an universal theoretical model for the rolling process. Finite element analysis(FEA) provides a perspective solution to the prediction. The FEA software DEFORM was applied to discovering the deformation, stress, strain and velocity field of the variable cross-section workpiece, and the effects of friction coefficient and rolling speed during the rolling process. which indicates that the average rolling force at friction coefficient of 0.4 is 6.5% higher than that at 0.12, and the rolling velocity has less effect on the equivalent stress and strain distribution, which would confer instructive significance on the theoretical study as well as the engineering practice.展开更多
Continuous drive friction welding was employed to join the aeronautic aluminum alloy 2024.Parametric optimization and microstructural characterization were investigated.Results show that friction pressure is the most ...Continuous drive friction welding was employed to join the aeronautic aluminum alloy 2024.Parametric optimization and microstructural characterization were investigated.Results show that friction pressure is the most significant factor influencing the tensile strength of joints.To obtain a high joint efficiency,the combination of moderate friction pressure,less friction time and higher upset pressure is recommended.The optimized joint efficiency from Taguchi analysis reaches 92% of base metal.Under the optimized experimental condition,the interfacial peak temperature is calculated analytically in the range of 779-794 K,which is validated by experimental data.Fine recrystallized grains caused by the high temperature and plastic deformation are observed in the friction interface zone.The grain refinement is limited in the thermo-mechanically affected zone,where most of matrix grains are deformed severely.The extensive dissolution and limited re-precipitation of strengthening phases result in a lower microhardness in the friction interface zone than that in the thermo-mechanically affected zone.展开更多
In order to accurately predict the productivity of herringbone multilateral well,a new productivity prediction model was founded.And based on this model,orthogonal test and multiple factor variance analysis were appli...In order to accurately predict the productivity of herringbone multilateral well,a new productivity prediction model was founded.And based on this model,orthogonal test and multiple factor variance analysis were applied to study optimization design of herringbone multilateral well.According to the characteristics of herringbone multilateral well,by using pressure superposition and mirror image reflection theory,the coupled model of herringbone multilateral well was developed on the basis of a three-dimensional pseudo-pressure distribution model for horizontal wells.The model was formulated in consideration of friction loss,acceleration loss of the wellbore and mixed loss at the confluence of main wellbore and branched one.After mathematical simulation on productivity of the herringbone multilateral well with the coupled model,the effects of well configuration on productivity were analyzed.The results show that lateral number is the most important factor,length of main wellbore and length of branched wellbore are the secondary ones,angle between main and branched one has the least influence.展开更多
Serious accidents of mine hoists caused by high-speed sliding between friction lining and wire rope are often seen in coal mines.In order to solve this problem,we analyzed the contact characteristics between friction ...Serious accidents of mine hoists caused by high-speed sliding between friction lining and wire rope are often seen in coal mines.In order to solve this problem,we analyzed the contact characteristics between friction lining and wire rope.Then we carried out a dynamic mechanical analysis(DMA) to explain the change in mechanical properties of the friction lining as function of temperature and load frequency and found that temperature has a stronger effect on the mechanical properties than the frequency.We used multiple regression analysis to obtain the thermoviscoelastic constitutive relations of the friction lining.As well we derived the analytic solution for the thermoviscoelastic contact radius and pressure by combining the theory of viscoelastic contact mechanics with thermoviscoelastic constitutive relations.展开更多
The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and t...The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and the cohesive force. The influences of type, shape, size distribution, pore ratio, moisture content and variation of vibration velocity on the dynamic shear strength of granules were studied. Based on numerous vibration shear experiments, the authors investigate the mechanism of dynamic shear strength in granules in terms of the fundamental principle and the relevant theory of modern tribology.展开更多
Based on theoretical analysis and experiment, when the difference between the ropes length is ensured, the radius difference between the rope grooves and the difference of the rope strain of a double rope friction hoi...Based on theoretical analysis and experiment, when the difference between the ropes length is ensured, the radius difference between the rope grooves and the difference of the rope strain of a double rope friction hoist will decrease with the increasing of hoisting times. Then the rope grooves cutting are not needed. If the connection form of the ropes or the structure of the frictional wheel of a four ropes friction hoist are changed into as a double ropes hoists, the hoist rope grooves will not need to be cut as well, and the working time will be saved and the service life of the rope lining will be lengthened also.展开更多
We used molecular dynamics simulation to investigate the friction of a single asperity against a rigid substrate, while generating debris. In the low wear regime(i.e., non-linear wear rate dependence on the contact st...We used molecular dynamics simulation to investigate the friction of a single asperity against a rigid substrate, while generating debris. In the low wear regime(i.e., non-linear wear rate dependence on the contact stress, via atom-by-atom attrition), the frictional stress is linearly dependent on the normal stress, without any lubrication effect from the wear debris particles. Both the slope(friction coefficient) and friction at zero normal stress depend strongly on asperity-substrate adhesion. In the high wear regime(i.e., linear wear rate dependence on the contact stress, via plastic flow), the friction-normal stress curves deviate from a linear relation merging toward plastic flow of the single asperity which is independent of the interfacial adhesion. One can further link wear and friction by considering debris generation as chemical reaction, driven by both normal and frictional forces. The coupling between wear and friction can then be quantified by a thermodynamic efficiency of the debris generation. While the efficiency is less than 5% in the low wear regime, indicating poor mechanochemical coupling, it increases with normal stress toward 50% in the high wear regime.展开更多
In this work, the prediction of wear for revolute joint with clearance in multibody systems is investigated using a computational methodology. The contact model in clearance joint is established using a new hybrid non...In this work, the prediction of wear for revolute joint with clearance in multibody systems is investigated using a computational methodology. The contact model in clearance joint is established using a new hybrid nonlinear contact force model and the friction effect is considered by using a modified Coulomb friction model. The dynamics model of multibody system with clearance is established using dynamic segmentation modeling method and the computational process for wear analysis of clearance joint in multibody systems is presented. The main computational process for wear analysis of clearance joint includes two steps, which are dynamics analysis and wear analysis. The dynamics simulation of multibody system with revolute clearance joint is carried out and the contact forces are drawn and used to calculate the wear amount of revolute clearance joint based on the Archard's wear model. Finally, a four-bar multibody mechanical system with revolute clearance joint is used as numerical example application to perform the simulation and show the dynamics responses and wear characteristics of multibody systems with revolute clearance joint. The main results of this work indicate that the contact between the joint elements is wider and more frequent in some specific regions and the wear phenomenon is not regular around the joint surface, which causes the clearance size increase non-regularly after clearance joint wear. This work presents an effective method to predict wear of revolute joint with clearance in multibody systems.展开更多
基金Project(RG086/10AET) supported by the Institute of Research Management and Monitoring,University of Malaya,Malaysia
文摘Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on comparison between the theories. In this work, comparison between the theories with finite element analysis is done using the PLAXIS software. The comparative results show that in terms of distribution and magnitude of active earth pressure, RANKINE's theory possesses the highest match to the PLAXIS analysis. Parametric studies were also done to study the responses of active earth pressure distribution to varying parameters Increasing soil friction angle and wall friction causes decrease in active earth pressure. In contrast, active earth pressure increases with increasing soil unit weight and height of wall. RANK/NE's theory has the highest compatibility to finite element analysis among all theories, and utilization of this theory leads to proficient retaining wall design.
基金support from the authorities of the National Natural Science Foundation of China (Grant No. 41171016)Sichuan Province Science and technology support program (Grant No. 2014SZ0163)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (Grant No. SKHL1309 and SKHL1418)
文摘Roughness elements are various in a mountain area; they include gravel and ground surface vegetation that often result in surface friction drag to resist overland flows. The variation and characteristics of flow resistance strongly impact the overland flow process and watershed floods. In view of the universal existence of natural vegetation, such as Chlorophytum malayense(CM) or Ophiopogon bodinieri(OB), and the sand-gravel bed of the river channel, it is important to understand the role of different types of roughness elements in flow resistance. This study was performed to investigate and compare through flume experiments the behaviors of overland flow resistance by the reaction of multi-scale configuration of different roughness elements. The result showed that the resistance coefficient gradually reduced versus the increase of flow rate in unit width and tended to be a constant when q = 3.0 l/s.m, Fr = 1.0, and Re = 4000 for slopes of 6 to 10 degrees. The gap of the vegetated rough bed and the gravel rough bed is limited to the same as the gap of the two types of vegetation, CM and OB. It was noted that the vegetation contributed to the increase in form resistance negatively and may lead to the mean resistance on decrease. To classify the flow pattern, the laminar flows were described by DarcyWeisbach's equation. In the study the f-Re equation of vegetated bed was developed with f ?5000 Re.The friction coefficient for laminar flows can be regarded as the critical value for identifying the transformation point of the flow pattern.
基金Project(F12-256-1-00)supported by the Key Laboratory Program of Shenyang City,ChinaProject(N090403006)supported by the Seed Cultivation Fund,ChinaProject supported by the Research Innovation Fund for Young Teachers,China
文摘Due to the variation of the blade cross-section, the deformation stress and strain of the workpiece keep changing during the rolling process and the conventional rolling theory is no longer valid. The complexity and diversity of the blade cross-section determine it impossible to establish an universal theoretical model for the rolling process. Finite element analysis(FEA) provides a perspective solution to the prediction. The FEA software DEFORM was applied to discovering the deformation, stress, strain and velocity field of the variable cross-section workpiece, and the effects of friction coefficient and rolling speed during the rolling process. which indicates that the average rolling force at friction coefficient of 0.4 is 6.5% higher than that at 0.12, and the rolling velocity has less effect on the equivalent stress and strain distribution, which would confer instructive significance on the theoretical study as well as the engineering practice.
基金Project(51475196) supported by the National Natural Science Foundation of ChinaProject(2017ZX04004001) supported by the National Science and Technology Major Project on High-end Numerically Controlled Machine Tools and Basic Manufacturing Technology,China
文摘Continuous drive friction welding was employed to join the aeronautic aluminum alloy 2024.Parametric optimization and microstructural characterization were investigated.Results show that friction pressure is the most significant factor influencing the tensile strength of joints.To obtain a high joint efficiency,the combination of moderate friction pressure,less friction time and higher upset pressure is recommended.The optimized joint efficiency from Taguchi analysis reaches 92% of base metal.Under the optimized experimental condition,the interfacial peak temperature is calculated analytically in the range of 779-794 K,which is validated by experimental data.Fine recrystallized grains caused by the high temperature and plastic deformation are observed in the friction interface zone.The grain refinement is limited in the thermo-mechanically affected zone,where most of matrix grains are deformed severely.The extensive dissolution and limited re-precipitation of strengthening phases result in a lower microhardness in the friction interface zone than that in the thermo-mechanically affected zone.
基金Project(12521044) supported by Scientific and Technological Research Program of Heilongjiang Provincial Education Department,China
文摘In order to accurately predict the productivity of herringbone multilateral well,a new productivity prediction model was founded.And based on this model,orthogonal test and multiple factor variance analysis were applied to study optimization design of herringbone multilateral well.According to the characteristics of herringbone multilateral well,by using pressure superposition and mirror image reflection theory,the coupled model of herringbone multilateral well was developed on the basis of a three-dimensional pseudo-pressure distribution model for horizontal wells.The model was formulated in consideration of friction loss,acceleration loss of the wellbore and mixed loss at the confluence of main wellbore and branched one.After mathematical simulation on productivity of the herringbone multilateral well with the coupled model,the effects of well configuration on productivity were analyzed.The results show that lateral number is the most important factor,length of main wellbore and length of branched wellbore are the secondary ones,angle between main and branched one has the least influence.
基金Projects 50875253 supported by the National Natural Science Foundation of China20060290505 by the Research Fund for the Doctoral Program of Higher Education of China+2 种基金107054 by the Key Project of Ministry of Education of ChinaBK2008127 by the Natural Science Foundation of Jiangsu ProvinceCX08B_042Z by the Scientific Innovation Program for Postgraduates in Colleges and Universities of Jiangsu Province
文摘Serious accidents of mine hoists caused by high-speed sliding between friction lining and wire rope are often seen in coal mines.In order to solve this problem,we analyzed the contact characteristics between friction lining and wire rope.Then we carried out a dynamic mechanical analysis(DMA) to explain the change in mechanical properties of the friction lining as function of temperature and load frequency and found that temperature has a stronger effect on the mechanical properties than the frequency.We used multiple regression analysis to obtain the thermoviscoelastic constitutive relations of the friction lining.As well we derived the analytic solution for the thermoviscoelastic contact radius and pressure by combining the theory of viscoelastic contact mechanics with thermoviscoelastic constitutive relations.
基金TheNationalNaturalScienceFoundationofChina (No .5 0 0 74 0 34)
文摘The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and the cohesive force. The influences of type, shape, size distribution, pore ratio, moisture content and variation of vibration velocity on the dynamic shear strength of granules were studied. Based on numerous vibration shear experiments, the authors investigate the mechanism of dynamic shear strength in granules in terms of the fundamental principle and the relevant theory of modern tribology.
文摘Based on theoretical analysis and experiment, when the difference between the ropes length is ensured, the radius difference between the rope grooves and the difference of the rope strain of a double rope friction hoist will decrease with the increasing of hoisting times. Then the rope grooves cutting are not needed. If the connection form of the ropes or the structure of the frictional wheel of a four ropes friction hoist are changed into as a double ropes hoists, the hoist rope grooves will not need to be cut as well, and the working time will be saved and the service life of the rope lining will be lengthened also.
基金support from the National Science Foundation (Grant No. CMMI-1031408)
文摘We used molecular dynamics simulation to investigate the friction of a single asperity against a rigid substrate, while generating debris. In the low wear regime(i.e., non-linear wear rate dependence on the contact stress, via atom-by-atom attrition), the frictional stress is linearly dependent on the normal stress, without any lubrication effect from the wear debris particles. Both the slope(friction coefficient) and friction at zero normal stress depend strongly on asperity-substrate adhesion. In the high wear regime(i.e., linear wear rate dependence on the contact stress, via plastic flow), the friction-normal stress curves deviate from a linear relation merging toward plastic flow of the single asperity which is independent of the interfacial adhesion. One can further link wear and friction by considering debris generation as chemical reaction, driven by both normal and frictional forces. The coupling between wear and friction can then be quantified by a thermodynamic efficiency of the debris generation. While the efficiency is less than 5% in the low wear regime, indicating poor mechanochemical coupling, it increases with normal stress toward 50% in the high wear regime.
基金the National Natural Science Foundation of China (Grant Nos. 50975056 and 11072066)the Scientific Research Foundation of Harbin Institute of Technology at Weihai (Grant No. HIT(WH)XB201120)the Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.2013122)
文摘In this work, the prediction of wear for revolute joint with clearance in multibody systems is investigated using a computational methodology. The contact model in clearance joint is established using a new hybrid nonlinear contact force model and the friction effect is considered by using a modified Coulomb friction model. The dynamics model of multibody system with clearance is established using dynamic segmentation modeling method and the computational process for wear analysis of clearance joint in multibody systems is presented. The main computational process for wear analysis of clearance joint includes two steps, which are dynamics analysis and wear analysis. The dynamics simulation of multibody system with revolute clearance joint is carried out and the contact forces are drawn and used to calculate the wear amount of revolute clearance joint based on the Archard's wear model. Finally, a four-bar multibody mechanical system with revolute clearance joint is used as numerical example application to perform the simulation and show the dynamics responses and wear characteristics of multibody systems with revolute clearance joint. The main results of this work indicate that the contact between the joint elements is wider and more frequent in some specific regions and the wear phenomenon is not regular around the joint surface, which causes the clearance size increase non-regularly after clearance joint wear. This work presents an effective method to predict wear of revolute joint with clearance in multibody systems.