Roughness elements are various in a mountain area; they include gravel and ground surface vegetation that often result in surface friction drag to resist overland flows. The variation and characteristics of flow resis...Roughness elements are various in a mountain area; they include gravel and ground surface vegetation that often result in surface friction drag to resist overland flows. The variation and characteristics of flow resistance strongly impact the overland flow process and watershed floods. In view of the universal existence of natural vegetation, such as Chlorophytum malayense(CM) or Ophiopogon bodinieri(OB), and the sand-gravel bed of the river channel, it is important to understand the role of different types of roughness elements in flow resistance. This study was performed to investigate and compare through flume experiments the behaviors of overland flow resistance by the reaction of multi-scale configuration of different roughness elements. The result showed that the resistance coefficient gradually reduced versus the increase of flow rate in unit width and tended to be a constant when q = 3.0 l/s.m, Fr = 1.0, and Re = 4000 for slopes of 6 to 10 degrees. The gap of the vegetated rough bed and the gravel rough bed is limited to the same as the gap of the two types of vegetation, CM and OB. It was noted that the vegetation contributed to the increase in form resistance negatively and may lead to the mean resistance on decrease. To classify the flow pattern, the laminar flows were described by DarcyWeisbach's equation. In the study the f-Re equation of vegetated bed was developed with f ?5000 Re.The friction coefficient for laminar flows can be regarded as the critical value for identifying the transformation point of the flow pattern.展开更多
Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on com...Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on comparison between the theories. In this work, comparison between the theories with finite element analysis is done using the PLAXIS software. The comparative results show that in terms of distribution and magnitude of active earth pressure, RANKINE's theory possesses the highest match to the PLAXIS analysis. Parametric studies were also done to study the responses of active earth pressure distribution to varying parameters Increasing soil friction angle and wall friction causes decrease in active earth pressure. In contrast, active earth pressure increases with increasing soil unit weight and height of wall. RANK/NE's theory has the highest compatibility to finite element analysis among all theories, and utilization of this theory leads to proficient retaining wall design.展开更多
The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and t...The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and the cohesive force. The influences of type, shape, size distribution, pore ratio, moisture content and variation of vibration velocity on the dynamic shear strength of granules were studied. Based on numerous vibration shear experiments, the authors investigate the mechanism of dynamic shear strength in granules in terms of the fundamental principle and the relevant theory of modern tribology.展开更多
Due to the variation of the blade cross-section, the deformation stress and strain of the workpiece keep changing during the rolling process and the conventional rolling theory is no longer valid. The complexity and d...Due to the variation of the blade cross-section, the deformation stress and strain of the workpiece keep changing during the rolling process and the conventional rolling theory is no longer valid. The complexity and diversity of the blade cross-section determine it impossible to establish an universal theoretical model for the rolling process. Finite element analysis(FEA) provides a perspective solution to the prediction. The FEA software DEFORM was applied to discovering the deformation, stress, strain and velocity field of the variable cross-section workpiece, and the effects of friction coefficient and rolling speed during the rolling process. which indicates that the average rolling force at friction coefficient of 0.4 is 6.5% higher than that at 0.12, and the rolling velocity has less effect on the equivalent stress and strain distribution, which would confer instructive significance on the theoretical study as well as the engineering practice.展开更多
基金support from the authorities of the National Natural Science Foundation of China (Grant No. 41171016)Sichuan Province Science and technology support program (Grant No. 2014SZ0163)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (Grant No. SKHL1309 and SKHL1418)
文摘Roughness elements are various in a mountain area; they include gravel and ground surface vegetation that often result in surface friction drag to resist overland flows. The variation and characteristics of flow resistance strongly impact the overland flow process and watershed floods. In view of the universal existence of natural vegetation, such as Chlorophytum malayense(CM) or Ophiopogon bodinieri(OB), and the sand-gravel bed of the river channel, it is important to understand the role of different types of roughness elements in flow resistance. This study was performed to investigate and compare through flume experiments the behaviors of overland flow resistance by the reaction of multi-scale configuration of different roughness elements. The result showed that the resistance coefficient gradually reduced versus the increase of flow rate in unit width and tended to be a constant when q = 3.0 l/s.m, Fr = 1.0, and Re = 4000 for slopes of 6 to 10 degrees. The gap of the vegetated rough bed and the gravel rough bed is limited to the same as the gap of the two types of vegetation, CM and OB. It was noted that the vegetation contributed to the increase in form resistance negatively and may lead to the mean resistance on decrease. To classify the flow pattern, the laminar flows were described by DarcyWeisbach's equation. In the study the f-Re equation of vegetated bed was developed with f ?5000 Re.The friction coefficient for laminar flows can be regarded as the critical value for identifying the transformation point of the flow pattern.
基金Project(RG086/10AET) supported by the Institute of Research Management and Monitoring,University of Malaya,Malaysia
文摘Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on comparison between the theories. In this work, comparison between the theories with finite element analysis is done using the PLAXIS software. The comparative results show that in terms of distribution and magnitude of active earth pressure, RANKINE's theory possesses the highest match to the PLAXIS analysis. Parametric studies were also done to study the responses of active earth pressure distribution to varying parameters Increasing soil friction angle and wall friction causes decrease in active earth pressure. In contrast, active earth pressure increases with increasing soil unit weight and height of wall. RANK/NE's theory has the highest compatibility to finite element analysis among all theories, and utilization of this theory leads to proficient retaining wall design.
基金TheNationalNaturalScienceFoundationofChina (No .5 0 0 74 0 34)
文摘The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and the cohesive force. The influences of type, shape, size distribution, pore ratio, moisture content and variation of vibration velocity on the dynamic shear strength of granules were studied. Based on numerous vibration shear experiments, the authors investigate the mechanism of dynamic shear strength in granules in terms of the fundamental principle and the relevant theory of modern tribology.
基金Project(F12-256-1-00)supported by the Key Laboratory Program of Shenyang City,ChinaProject(N090403006)supported by the Seed Cultivation Fund,ChinaProject supported by the Research Innovation Fund for Young Teachers,China
文摘Due to the variation of the blade cross-section, the deformation stress and strain of the workpiece keep changing during the rolling process and the conventional rolling theory is no longer valid. The complexity and diversity of the blade cross-section determine it impossible to establish an universal theoretical model for the rolling process. Finite element analysis(FEA) provides a perspective solution to the prediction. The FEA software DEFORM was applied to discovering the deformation, stress, strain and velocity field of the variable cross-section workpiece, and the effects of friction coefficient and rolling speed during the rolling process. which indicates that the average rolling force at friction coefficient of 0.4 is 6.5% higher than that at 0.12, and the rolling velocity has less effect on the equivalent stress and strain distribution, which would confer instructive significance on the theoretical study as well as the engineering practice.