The friction coefficients between the surfaces of a ball and a disc lubricated by a space lubricating oil No.4129 were measured at various operating conditions on a ball-disc friction test rig. Friction characteristic...The friction coefficients between the surfaces of a ball and a disc lubricated by a space lubricating oil No.4129 were measured at various operating conditions on a ball-disc friction test rig. Friction characteristic curves were obtained under sliding and rolling movements at point contact. A new model for calculation of the friction coefficient was presented. The results show that the bigger the load is, the larger the friction coefficient becomes. The rolling speed ranging from 1 m/s to10 m/s has an important effect on the friction coefficient. The friction coefficient increases with the increase in sliding speed and the decrease in rolling speed. The linear variation region of the friction coefficient versus the sliding speed at high rolling speed is wider than that at low rolling speed. The model for calculation of the friction coefficient is accurate for engineering use.展开更多
Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinf...Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinforced polytetrafluoroethylenepolyphenylene sulfide(PTFE-PPS) composites in a sliding system. The tribological behaviors of the composites were evaluated under different normal loads(100–300 N) at a high linear velocity(2 m/s) using a block-on-ring tester. Addition of the nano-Al_2O_3 filler improved the antiwear performance of the PTFE-PPS composites, and the friction coefficient increased slightly. The lowest wear rate was obtained when the nano-Al_2O_3 content was 3%(volume fraction). Further, the results indicated a linear correlation between wear and the amount of energy dissipated, even though the wear mechanism changed with the nano-Al_2O_3 content, independent of the normal load applied.展开更多
基金supported by the National Science Foundation of China (51105131)the Excellent Youth Foundation of Henan Scientific Committee (12410050002)the Creative Talent Foundation at Universities of Henan Province (2011HASTIT1016)
文摘The friction coefficients between the surfaces of a ball and a disc lubricated by a space lubricating oil No.4129 were measured at various operating conditions on a ball-disc friction test rig. Friction characteristic curves were obtained under sliding and rolling movements at point contact. A new model for calculation of the friction coefficient was presented. The results show that the bigger the load is, the larger the friction coefficient becomes. The rolling speed ranging from 1 m/s to10 m/s has an important effect on the friction coefficient. The friction coefficient increases with the increase in sliding speed and the decrease in rolling speed. The linear variation region of the friction coefficient versus the sliding speed at high rolling speed is wider than that at low rolling speed. The model for calculation of the friction coefficient is accurate for engineering use.
基金Project(51165022)supported by the National Natural Science Foundation of ChinaProject(20122117)supported by the Lanzhou Science and Technology Bureau Foundation,ChinaProject(1310RJZA036)supported by the Natural Science Foundation of Gansu Province,China
文摘Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinforced polytetrafluoroethylenepolyphenylene sulfide(PTFE-PPS) composites in a sliding system. The tribological behaviors of the composites were evaluated under different normal loads(100–300 N) at a high linear velocity(2 m/s) using a block-on-ring tester. Addition of the nano-Al_2O_3 filler improved the antiwear performance of the PTFE-PPS composites, and the friction coefficient increased slightly. The lowest wear rate was obtained when the nano-Al_2O_3 content was 3%(volume fraction). Further, the results indicated a linear correlation between wear and the amount of energy dissipated, even though the wear mechanism changed with the nano-Al_2O_3 content, independent of the normal load applied.