Dry wear behavior of the rheo-casting Al-16Si-4Cu-0.5Mg alloy was investigated by micro-scratch and dry sliding weartests. Analyses of the microstructure, scratch grooves, wear tracks, worn surfaces and wear debris of...Dry wear behavior of the rheo-casting Al-16Si-4Cu-0.5Mg alloy was investigated by micro-scratch and dry sliding weartests. Analyses of the microstructure, scratch grooves, wear tracks, worn surfaces and wear debris of the alloy were carried out byoptical microscope and scanning electron microscope. The microstructural analysis showed that via rheo-processing, the primary Siwas refined and rounded, eutectics dispersed more homogenously, and even the skeleton AlFeMnSi phase was fragmented into facetshape. Micro-scratch test showed that the microstructural refinement resulted in better wear resistance. Dry sliding wear test revealedthat the rheo-processed sample exhibit obviously superior wear resistance because of the microstructure improvement. The dominantmechanism in mild wear condition is abrasion, but it turned to adhesion and oxidation in high applied load and fast sliding velocityconditions.展开更多
The microstructure and nano-tribological properties of 316 austenitic stainless steel have been investigated by using the in situ nano-mechanical testing system Tribolndenter, in which six different normal forces were...The microstructure and nano-tribological properties of 316 austenitic stainless steel have been investigated by using the in situ nano-mechanical testing system Tribolndenter, in which six different normal forces were chosen to make a scratch and indentation. The results show that the contact depth of the indentation increases with the normal force and material is piled up on the edge of the indentation as plastic distortion. The stable nano-hardness and the reduced modulus of 316 austenitic stainless steel are approximately 6 GPa and 160 GPa, respectively. The friction coefficients of 316 stainless steel with conic-type diamond tip have a typical value of about 0.13, 0.15, 0.17, 0.19, 0.22 and 0.25 when the normal forces are kept at 500 μN, 1000 μN, 1500 μN, 2000 μN, 2500 μN and 3000 μN, revealing an increasing trend with the normal forces. The increase of the friction coefficient in the unloading segment may result from the adhesion force caused by the material piled up.展开更多
Scratch test and friction test were performed to evaluate the internal and external interface behaviors of TiAISiN coating, respectively. The critical compressive and shearing stress of coating failure during scratch ...Scratch test and friction test were performed to evaluate the internal and external interface behaviors of TiAISiN coating, respectively. The critical compressive and shearing stress of coating failure during scratch test were calculated and the values are 30.84 MPa and 4.98 MPa respectively. The average friction coefficients of TiAISiN coat- ing against 2Crl2Ni4Mo3VNbN steel are 0.70 (sliding speed 50 m/rain), 0.63 (sliding speed 100 m/min), and 0.81 (sliding speed 150 m/min). The elements diffusion was analyzed by EDS. A1 and Si element of coating material dif- fuse to the steel disc, except Ti element. The oxidation decreases with the increase of sliding speed, but the adhesion increases with the increase of sliding speed. More A1 element diffuses to the steel disc at the high sliding speed, but the diffusion of Si element keeps almost constant at dlfferent sliding speeds.展开更多
基金Project(51404153)supported by the National Natural Science Foundation of ChinaProject supported by the Joint Ph D Program of the China Scholarship Council(CSC)
文摘Dry wear behavior of the rheo-casting Al-16Si-4Cu-0.5Mg alloy was investigated by micro-scratch and dry sliding weartests. Analyses of the microstructure, scratch grooves, wear tracks, worn surfaces and wear debris of the alloy were carried out byoptical microscope and scanning electron microscope. The microstructural analysis showed that via rheo-processing, the primary Siwas refined and rounded, eutectics dispersed more homogenously, and even the skeleton AlFeMnSi phase was fragmented into facetshape. Micro-scratch test showed that the microstructural refinement resulted in better wear resistance. Dry sliding wear test revealedthat the rheo-processed sample exhibit obviously superior wear resistance because of the microstructure improvement. The dominantmechanism in mild wear condition is abrasion, but it turned to adhesion and oxidation in high applied load and fast sliding velocityconditions.
基金Project 50535050 supported by National Natural Science Foundation of China
文摘The microstructure and nano-tribological properties of 316 austenitic stainless steel have been investigated by using the in situ nano-mechanical testing system Tribolndenter, in which six different normal forces were chosen to make a scratch and indentation. The results show that the contact depth of the indentation increases with the normal force and material is piled up on the edge of the indentation as plastic distortion. The stable nano-hardness and the reduced modulus of 316 austenitic stainless steel are approximately 6 GPa and 160 GPa, respectively. The friction coefficients of 316 stainless steel with conic-type diamond tip have a typical value of about 0.13, 0.15, 0.17, 0.19, 0.22 and 0.25 when the normal forces are kept at 500 μN, 1000 μN, 1500 μN, 2000 μN, 2500 μN and 3000 μN, revealing an increasing trend with the normal forces. The increase of the friction coefficient in the unloading segment may result from the adhesion force caused by the material piled up.
基金Supported by China Postdoctoral Science Foundation(No. 20110490380 and No. 20110490383)Dongfang Turbine Co, Ltd (No. 2011GZ011)State Key Laboratory of Tribology, Tsinghua University (No. SKLT10A01)
文摘Scratch test and friction test were performed to evaluate the internal and external interface behaviors of TiAISiN coating, respectively. The critical compressive and shearing stress of coating failure during scratch test were calculated and the values are 30.84 MPa and 4.98 MPa respectively. The average friction coefficients of TiAISiN coat- ing against 2Crl2Ni4Mo3VNbN steel are 0.70 (sliding speed 50 m/rain), 0.63 (sliding speed 100 m/min), and 0.81 (sliding speed 150 m/min). The elements diffusion was analyzed by EDS. A1 and Si element of coating material dif- fuse to the steel disc, except Ti element. The oxidation decreases with the increase of sliding speed, but the adhesion increases with the increase of sliding speed. More A1 element diffuses to the steel disc at the high sliding speed, but the diffusion of Si element keeps almost constant at dlfferent sliding speeds.