Two novel ashless additives - benzothiazole derivatives containing boron and chlorine, OBC and BBC, were synthesized. The tribological performances of OBC and BBC at different mass ratios as additives in rapeseed oil ...Two novel ashless additives - benzothiazole derivatives containing boron and chlorine, OBC and BBC, were synthesized. The tribological performances of OBC and BBC at different mass ratios as additives in rapeseed oil (RO) were examined on a four-ball machine. The worn surfaces of the lower steel balls lubricated by oil samples were analyzed by means of scanning electron microscopy (SEM). The test results showed that OBC and BBC had good solubility in the base oil, and could effectively increase the load-carrying capacity of the base oil. The maximum non-seizure load of oil sample containing 1.5 m% BBC was 1117 N, which was 2.3 times as much as that of the base oil. Both OBC and BBC could improve the anti-wear and corrosion inhibiting performance and thermal stability of the base oil, whose initial decomposition temperatures was above 350 ~C. However, OBC and BBC at different concentrations could increase the friction coefficient of the base oil. The SEM morphology of steel balls lubricated by oil samples containing 1.5 m% additives seemed to be more uniform and smoother than that of the base oil, and the scars formed were very shallow.展开更多
Aimed at the difficulty in revealing the vibration localization mechanism of mistuned bladed disks by using simple non-linear model,a mechanical model of the bladed disk with random mistuning of hysteretic dry frictio...Aimed at the difficulty in revealing the vibration localization mechanism of mistuned bladed disks by using simple non-linear model,a mechanical model of the bladed disk with random mistuning of hysteretic dry friction damping was established.Then,the incremental harmonic balance method was used to analyze the effects of the parameters of bladed disks,such as the mistuning strength of dry friction force,coupled strength,viscous damping ratio and friction strength,on the forced response of the bladed disks.The results show that the vibrational energy localization phenomenon turns up in the tuned bladed disks if the nonlinear friction damping exists,and the random mistuning of the dry friction force intensifies this kind of vibration localization.展开更多
Brake friction materials with different zinc powder contents(0,2,4,6,8 wt.%)were fabricated via powder metallurgy method.The results indicate that with the increasing zinc powder content,the density and thermal conduc...Brake friction materials with different zinc powder contents(0,2,4,6,8 wt.%)were fabricated via powder metallurgy method.The results indicate that with the increasing zinc powder content,the density and thermal conductivity of the materials gradually increase,while the hardness decreases monotonously.With increasing zinc powder content,the curve of the nominal friction coefficient shows fluctuating trend but the lowest friction coefficient also shows an increase.However,the wear rate and braking noise of the friction material monotonously decrease with increasing zinc content.This effect may be attributed to the transformation of the tribological mechanism from adhesive wear and abrasive wear to adhesive wear.The brake friction material with 4 wt.%zinc powder exhibits both the best tribological and noise performance.展开更多
The influence of R/v ratio on joint quality in 2024-T351 aluminum alloy was studied. Specimens were subjected to friction stir welding with the rotation rates of 750, 950 and 1180 r/min and welding speed between 73 an...The influence of R/v ratio on joint quality in 2024-T351 aluminum alloy was studied. Specimens were subjected to friction stir welding with the rotation rates of 750, 950 and 1180 r/min and welding speed between 73 and 190 mm/min, providing R/v ratio between 5.00 and 10.27. The welded joints were tested by means of both non-destructive (visual, penetrant and X-ray inspection) and destructive (metallographic, tension and hardness) testing. In all specimens typical zones are revealed, with corresponding differences in grain size. Tensile efficiency of the joints obtained is in the range of 52.2%to 82.3%. The results show that the best quality is obtained at R/v ratio of 8.06, 10.17 and 10.27. This behavior is attributed to the assumption that the material flows around the pin with an optimal speed, i.e. sufficient amount of material is available to fill the gap and prevent tunnel formation. R/v ratio also showed influence on hardness distribution, onion features and crack initiation/propagation zones.展开更多
Despite the great achievements made in improvement of wear resistance properties of aluminum alloys, their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired ...Despite the great achievements made in improvement of wear resistance properties of aluminum alloys, their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired combination of surface properties. These problems can be solved through the duplex coatings. The aim of the present study is to overview the research advances on processes of duplex coatings on (aluminum) alloys combined with micro plasma oxidation process and with other modern processes such as physical vapour deposition and plasma assisted chemical vapour deposition and also to evaluate the performance of micro plasma oxidation coatings in improving the load-bearing, friction and wear resistance properties of aluminum alloys in comparison with other coatings. Wherein, a more detailed presentation of the processes and their performances and disadvantages are given as well.展开更多
It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformat...It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformation properties of CTB was examined and discussed.Results indicate that the triaxial compressive and deformation behavior of CTB is strongly affected by the cement content,curing age and confining pressure.The increase in cement content,curing age and confining pressure leads to a change in stress−strain behavior and an increase in the axial strain at failure and post-peak strength loss.The cohesion of CTB rises as the curing age and cement content increase.However,the enhancement in internal friction angle is trivial and negligible.It should be noted that the failure pattern of CTB samples in triaxial compression is mainly along a shear plane,the confining pressure restrains the lateral expansion and the bulging failure pattern is dominantly detected in CTB samples as curing age length and cement content increase.The results will help to better understand the triaxial mechanical and deformation behavior of CTB.展开更多
Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-th...Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-thermometers at 47 m,120 m,and 280 m levels on Beijing 325 m meteorological tower.The time series of 3D atmospheric velocity were analyzed by using conventional Fourier spectral analysis and decompose into three parts:basic mean flow(period > 10 min),gusty disturbances(1 min < period < 10 min)and turbulence fluctuations(period < 1 min).The results show that under weak mean wind condition:1)the gusty disturbances are the most strong fluctuations,contribute about 60% kinetic energy of eddy kinetic energy and 80% downward flux of momentum,although both the eddy kinetic energy and momentum transport are small in comparison with those in strong mean wind condition;2)the gusty wind disturbances are anisotropic;3)the gusty wind disturbances have obviously coherent structure,and their horizontal and vertical component are negatively correlated and make downward transport of momentum more effectively;4)the friction velocities related to turbulence and gusty wind are approximately constant with height in the surface layer.展开更多
AA5083 friction stir welds were produced using systematic experimental design, the process forces and heat input with varying parameters were studied. Helpful empirical models were developed in designing friction stir...AA5083 friction stir welds were produced using systematic experimental design, the process forces and heat input with varying parameters were studied. Helpful empirical models were developed in designing friction stir welding (FSW) tools and FSW welders. These models may be further helpful for making process parameter choice for this sort of alloy, defining welding program and control of process parameters by using computer numerical control friction stir welding welders. The results show that tool rotational speed, welding speed and tool shoulder diameter are most significant parameters affecting axial force and heat input, while longitudinal force is significantly affected by welding speed and probe diameter.展开更多
Based on the former performance capacity experiments of the magnet-friction energy dissipation devices, including the permanent magnet-friction energy dissipation device (PMF) and electromagnet-friction energy dissipa...Based on the former performance capacity experiments of the magnet-friction energy dissipation devices, including the permanent magnet-friction energy dissipation device (PMF) and electromagnet-friction energy dissipation devices (EMF), a 5-story steel frame model with spacious first story is designed and made according to a scale of 1/4. The magnet-friction energy dissipation devices can realize continuously varied controlling force, with rapid response and reverse recognition. Therefore, they overcome shortcomings usually found in energy dissipation devices whose force models are invariable. The two kinds of devices were fixed on the flexible first story of the structure model, and the shaking table tests have been carried out, respectively. In these tests, the performance of the devices and their effectiveness in structural control were confirmed. In this paper, the test results and analysis are discussed.展开更多
In this paper,we firstly review the carbon layered surface prepared with electron cyclotron resonance (ECR) plasma sputtering. Secondly,the friction behavior of carbon layered surface under pin-on-disk testing is desc...In this paper,we firstly review the carbon layered surface prepared with electron cyclotron resonance (ECR) plasma sputtering. Secondly,the friction behavior of carbon layered surface under pin-on-disk testing is described. Furthermore,the contact stress evolution processes of layered surface with and without transfer layer during wear are given for understanding the contact mechanisms. Finally,a three-dimension (3D) local yield map of layered surface is introduced,which is useful to predict the possible contact mechanisms.展开更多
Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flo...Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flow through ver tical annuli. The gap sizes are 0.9, 1.4 and 2.4mm, respectively. The experiments are conducted under condition of 1atm. The water in the annuli is heated by high temperature water reversely flowing through the inner tube and the outer annulus. The results show that the flow pattern begin to change from laminar to turbulent before Reynolds number approaches 2000, the flow resistance in annulus has little relations with the temperature difference and ways of being heated, but mainly depends on the ratio of mass flux to the width of annulus.展开更多
Using high strength steel and ultra-high strength steel in hot stamping and automobile parts is one of the most important ways of the automobile lightweight,which is the development trend of automobiles currently.In t...Using high strength steel and ultra-high strength steel in hot stamping and automobile parts is one of the most important ways of the automobile lightweight,which is the development trend of automobiles currently.In this paper, the development of test device for heat friction coefficient by high strength steel can provide important technical parameters for hot stamping process,making the right selection of equipment types,mold design,technology optimization,and research and development of lubrication medium of press forming.At the same time,the experiments indicate that the instrument has not only accurate test result but also good repeatability.展开更多
SIM (semi interlocking masonry) is a kind of innovative building system for mortar-less walls. It utilizes a special method of interlocking SIM bricks that allows relative sliding of brick courses in-plane of a wall...SIM (semi interlocking masonry) is a kind of innovative building system for mortar-less walls. It utilizes a special method of interlocking SIM bricks that allows relative sliding of brick courses in-plane of a wall and prevents out-of-plane relative movement of bricks. It has increased capacity to dissipate earthquake energy through friction between bricks compared with traditional masonry. It can be used in earthquake resistant frame structures as infill panels, which also act as EDD (energy dissipation devices). However, as a mortar-less system, it is not covered by masonry design standards. The purpose of this paper is to introduce S1M and also to develop an analytical design procedure for this innovative masonry system.展开更多
Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinf...Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinforced polytetrafluoroethylenepolyphenylene sulfide(PTFE-PPS) composites in a sliding system. The tribological behaviors of the composites were evaluated under different normal loads(100–300 N) at a high linear velocity(2 m/s) using a block-on-ring tester. Addition of the nano-Al_2O_3 filler improved the antiwear performance of the PTFE-PPS composites, and the friction coefficient increased slightly. The lowest wear rate was obtained when the nano-Al_2O_3 content was 3%(volume fraction). Further, the results indicated a linear correlation between wear and the amount of energy dissipated, even though the wear mechanism changed with the nano-Al_2O_3 content, independent of the normal load applied.展开更多
In this paper, the observational data from Marine and Meteorological Observation Platform (MMOP) at Bohe, Maoming and buoys located in Shanwei and Maoming are used to study the characteristics of air-sea temperature...In this paper, the observational data from Marine and Meteorological Observation Platform (MMOP) at Bohe, Maoming and buoys located in Shanwei and Maoming are used to study the characteristics of air-sea temperature and specific humidity difference and the relationship between wind and wave with the tropical cyclones over the South China Sea (SCS). The heat and momentum fluxes from eddy covariance measurement (EC) are compared with these fluxes calculated by the COARE 3.0 algorithm for Typhoon Koppu. The results show that at the developing and weakening stages of Koppu, both these differences between the sea surface and the near-surface atmosphere from the MMOP are negative, and data from the buoys also indicate that the differences are negative between the sea surface and near-surface atmosphere on the right rear portion of tropical cyclones (TCs) Molave and Chanthu. However, the differences are positive on the left fi'ont portion of Molave and Chanthu. These positive differences suggest that the heat flux is transferred from the ocean to the atmosphere, thus intensifying and maintaining the two TCs. The negative differences indicate that the ocean removes heat fluxes from the atmosphere, thus weakening the TCs. The wind-wave curves of TCs Molave and Chanthu show that significant wave height increases linearly with 2-min wind speed at 10-m height when the wind speed is less than 25 m/s, but when the wind speed is greater than 25 m/s, the significant wave height increases slightly with the wind speed. By comparing the observed sensible heat, latent heat, and friction velocity from EC with these variables from COARE 3.0 algorithm, a great bias between the observed and calculated sensible heat and latent heat fluxes is revealed, and the observed friction velocity is found to be almost the same as the calculated friction velocity.展开更多
基金supported by the National Natural Science Foundation of China (Study on higher-order logic based inductive logic programming learning algorithm and its application) (No. 61300098)Science and technology research project of Jilin province department of education
文摘Two novel ashless additives - benzothiazole derivatives containing boron and chlorine, OBC and BBC, were synthesized. The tribological performances of OBC and BBC at different mass ratios as additives in rapeseed oil (RO) were examined on a four-ball machine. The worn surfaces of the lower steel balls lubricated by oil samples were analyzed by means of scanning electron microscopy (SEM). The test results showed that OBC and BBC had good solubility in the base oil, and could effectively increase the load-carrying capacity of the base oil. The maximum non-seizure load of oil sample containing 1.5 m% BBC was 1117 N, which was 2.3 times as much as that of the base oil. Both OBC and BBC could improve the anti-wear and corrosion inhibiting performance and thermal stability of the base oil, whose initial decomposition temperatures was above 350 ~C. However, OBC and BBC at different concentrations could increase the friction coefficient of the base oil. The SEM morphology of steel balls lubricated by oil samples containing 1.5 m% additives seemed to be more uniform and smoother than that of the base oil, and the scars formed were very shallow.
基金Project(2007CB707706) supported by the National Basic Research Program of China
文摘Aimed at the difficulty in revealing the vibration localization mechanism of mistuned bladed disks by using simple non-linear model,a mechanical model of the bladed disk with random mistuning of hysteretic dry friction damping was established.Then,the incremental harmonic balance method was used to analyze the effects of the parameters of bladed disks,such as the mistuning strength of dry friction force,coupled strength,viscous damping ratio and friction strength,on the forced response of the bladed disks.The results show that the vibrational energy localization phenomenon turns up in the tuned bladed disks if the nonlinear friction damping exists,and the random mistuning of the dry friction force intensifies this kind of vibration localization.
基金Project(2016YFB1100103)supported by the National Key Research and Development Program of ChinaProject(KC1703004)supported by the Science and Technology Planning Project of Changsha City,ChinaProject(2018ZZTS127)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Brake friction materials with different zinc powder contents(0,2,4,6,8 wt.%)were fabricated via powder metallurgy method.The results indicate that with the increasing zinc powder content,the density and thermal conductivity of the materials gradually increase,while the hardness decreases monotonously.With increasing zinc powder content,the curve of the nominal friction coefficient shows fluctuating trend but the lowest friction coefficient also shows an increase.However,the wear rate and braking noise of the friction material monotonously decrease with increasing zinc content.This effect may be attributed to the transformation of the tribological mechanism from adhesive wear and abrasive wear to adhesive wear.The brake friction material with 4 wt.%zinc powder exhibits both the best tribological and noise performance.
基金Ministry of Education and Science of Serbia for financial support through Project TR34018
文摘The influence of R/v ratio on joint quality in 2024-T351 aluminum alloy was studied. Specimens were subjected to friction stir welding with the rotation rates of 750, 950 and 1180 r/min and welding speed between 73 and 190 mm/min, providing R/v ratio between 5.00 and 10.27. The welded joints were tested by means of both non-destructive (visual, penetrant and X-ray inspection) and destructive (metallographic, tension and hardness) testing. In all specimens typical zones are revealed, with corresponding differences in grain size. Tensile efficiency of the joints obtained is in the range of 52.2%to 82.3%. The results show that the best quality is obtained at R/v ratio of 8.06, 10.17 and 10.27. This behavior is attributed to the assumption that the material flows around the pin with an optimal speed, i.e. sufficient amount of material is available to fill the gap and prevent tunnel formation. R/v ratio also showed influence on hardness distribution, onion features and crack initiation/propagation zones.
文摘Despite the great achievements made in improvement of wear resistance properties of aluminum alloys, their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired combination of surface properties. These problems can be solved through the duplex coatings. The aim of the present study is to overview the research advances on processes of duplex coatings on (aluminum) alloys combined with micro plasma oxidation process and with other modern processes such as physical vapour deposition and plasma assisted chemical vapour deposition and also to evaluate the performance of micro plasma oxidation coatings in improving the load-bearing, friction and wear resistance properties of aluminum alloys in comparison with other coatings. Wherein, a more detailed presentation of the processes and their performances and disadvantages are given as well.
基金Projects(2018YFC0808403,2018YFE0123000)supported by the National Key Technologies Research&Development Program of ChinaProject(800015Z1185)supported by the Yueqi Young Scholar Project,ChinaProject(2020YJSNY04)supported by the Fundamental Research Funds for the Central Universities,China。
文摘It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformation properties of CTB was examined and discussed.Results indicate that the triaxial compressive and deformation behavior of CTB is strongly affected by the cement content,curing age and confining pressure.The increase in cement content,curing age and confining pressure leads to a change in stress−strain behavior and an increase in the axial strain at failure and post-peak strength loss.The cohesion of CTB rises as the curing age and cement content increase.However,the enhancement in internal friction angle is trivial and negligible.It should be noted that the failure pattern of CTB samples in triaxial compression is mainly along a shear plane,the confining pressure restrains the lateral expansion and the bulging failure pattern is dominantly detected in CTB samples as curing age length and cement content increase.The results will help to better understand the triaxial mechanical and deformation behavior of CTB.
基金supported by the national natural Science Foundation of China(40830103 and 41375018)the national Basic Research Program of China(2010CB951804)the Research Program of the Chinese Academy of Sciences(XDA10010403)
文摘Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-thermometers at 47 m,120 m,and 280 m levels on Beijing 325 m meteorological tower.The time series of 3D atmospheric velocity were analyzed by using conventional Fourier spectral analysis and decompose into three parts:basic mean flow(period > 10 min),gusty disturbances(1 min < period < 10 min)and turbulence fluctuations(period < 1 min).The results show that under weak mean wind condition:1)the gusty disturbances are the most strong fluctuations,contribute about 60% kinetic energy of eddy kinetic energy and 80% downward flux of momentum,although both the eddy kinetic energy and momentum transport are small in comparison with those in strong mean wind condition;2)the gusty wind disturbances are anisotropic;3)the gusty wind disturbances have obviously coherent structure,and their horizontal and vertical component are negatively correlated and make downward transport of momentum more effectively;4)the friction velocities related to turbulence and gusty wind are approximately constant with height in the surface layer.
文摘AA5083 friction stir welds were produced using systematic experimental design, the process forces and heat input with varying parameters were studied. Helpful empirical models were developed in designing friction stir welding (FSW) tools and FSW welders. These models may be further helpful for making process parameter choice for this sort of alloy, defining welding program and control of process parameters by using computer numerical control friction stir welding welders. The results show that tool rotational speed, welding speed and tool shoulder diameter are most significant parameters affecting axial force and heat input, while longitudinal force is significantly affected by welding speed and probe diameter.
文摘Based on the former performance capacity experiments of the magnet-friction energy dissipation devices, including the permanent magnet-friction energy dissipation device (PMF) and electromagnet-friction energy dissipation devices (EMF), a 5-story steel frame model with spacious first story is designed and made according to a scale of 1/4. The magnet-friction energy dissipation devices can realize continuously varied controlling force, with rapid response and reverse recognition. Therefore, they overcome shortcomings usually found in energy dissipation devices whose force models are invariable. The two kinds of devices were fixed on the flexible first story of the structure model, and the shaking table tests have been carried out, respectively. In these tests, the performance of the devices and their effectiveness in structural control were confirmed. In this paper, the test results and analysis are discussed.
基金National Natural Science Foundation of China(No.90923027No.51175405)
文摘In this paper,we firstly review the carbon layered surface prepared with electron cyclotron resonance (ECR) plasma sputtering. Secondly,the friction behavior of carbon layered surface under pin-on-disk testing is described. Furthermore,the contact stress evolution processes of layered surface with and without transfer layer during wear are given for understanding the contact mechanisms. Finally,a three-dimension (3D) local yield map of layered surface is introduced,which is useful to predict the possible contact mechanisms.
文摘Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flow through ver tical annuli. The gap sizes are 0.9, 1.4 and 2.4mm, respectively. The experiments are conducted under condition of 1atm. The water in the annuli is heated by high temperature water reversely flowing through the inner tube and the outer annulus. The results show that the flow pattern begin to change from laminar to turbulent before Reynolds number approaches 2000, the flow resistance in annulus has little relations with the temperature difference and ways of being heated, but mainly depends on the ratio of mass flux to the width of annulus.
基金National Science and Technology Supporting Program of China(No.2011BAG03B02)
文摘Using high strength steel and ultra-high strength steel in hot stamping and automobile parts is one of the most important ways of the automobile lightweight,which is the development trend of automobiles currently.In this paper, the development of test device for heat friction coefficient by high strength steel can provide important technical parameters for hot stamping process,making the right selection of equipment types,mold design,technology optimization,and research and development of lubrication medium of press forming.At the same time,the experiments indicate that the instrument has not only accurate test result but also good repeatability.
文摘SIM (semi interlocking masonry) is a kind of innovative building system for mortar-less walls. It utilizes a special method of interlocking SIM bricks that allows relative sliding of brick courses in-plane of a wall and prevents out-of-plane relative movement of bricks. It has increased capacity to dissipate earthquake energy through friction between bricks compared with traditional masonry. It can be used in earthquake resistant frame structures as infill panels, which also act as EDD (energy dissipation devices). However, as a mortar-less system, it is not covered by masonry design standards. The purpose of this paper is to introduce S1M and also to develop an analytical design procedure for this innovative masonry system.
基金Project(51165022)supported by the National Natural Science Foundation of ChinaProject(20122117)supported by the Lanzhou Science and Technology Bureau Foundation,ChinaProject(1310RJZA036)supported by the Natural Science Foundation of Gansu Province,China
文摘Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinforced polytetrafluoroethylenepolyphenylene sulfide(PTFE-PPS) composites in a sliding system. The tribological behaviors of the composites were evaluated under different normal loads(100–300 N) at a high linear velocity(2 m/s) using a block-on-ring tester. Addition of the nano-Al_2O_3 filler improved the antiwear performance of the PTFE-PPS composites, and the friction coefficient increased slightly. The lowest wear rate was obtained when the nano-Al_2O_3 content was 3%(volume fraction). Further, the results indicated a linear correlation between wear and the amount of energy dissipated, even though the wear mechanism changed with the nano-Al_2O_3 content, independent of the normal load applied.
基金Key Project of Natural Science Foundation of China(40730948)National Basic Research Program of China(2009CB421501)National Natural Science Foundation of China(41075051)
文摘In this paper, the observational data from Marine and Meteorological Observation Platform (MMOP) at Bohe, Maoming and buoys located in Shanwei and Maoming are used to study the characteristics of air-sea temperature and specific humidity difference and the relationship between wind and wave with the tropical cyclones over the South China Sea (SCS). The heat and momentum fluxes from eddy covariance measurement (EC) are compared with these fluxes calculated by the COARE 3.0 algorithm for Typhoon Koppu. The results show that at the developing and weakening stages of Koppu, both these differences between the sea surface and the near-surface atmosphere from the MMOP are negative, and data from the buoys also indicate that the differences are negative between the sea surface and near-surface atmosphere on the right rear portion of tropical cyclones (TCs) Molave and Chanthu. However, the differences are positive on the left fi'ont portion of Molave and Chanthu. These positive differences suggest that the heat flux is transferred from the ocean to the atmosphere, thus intensifying and maintaining the two TCs. The negative differences indicate that the ocean removes heat fluxes from the atmosphere, thus weakening the TCs. The wind-wave curves of TCs Molave and Chanthu show that significant wave height increases linearly with 2-min wind speed at 10-m height when the wind speed is less than 25 m/s, but when the wind speed is greater than 25 m/s, the significant wave height increases slightly with the wind speed. By comparing the observed sensible heat, latent heat, and friction velocity from EC with these variables from COARE 3.0 algorithm, a great bias between the observed and calculated sensible heat and latent heat fluxes is revealed, and the observed friction velocity is found to be almost the same as the calculated friction velocity.