In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and Ti...In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.展开更多
Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribologi...Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.展开更多
Water hydraulic systems have provoked major interest because of the human friendly and environmental safety aspects. Piston pump is one of the most frequently used hydraulic units in recent engineering technique. In w...Water hydraulic systems have provoked major interest because of the human friendly and environmental safety aspects. Piston pump is one of the most frequently used hydraulic units in recent engineering technique. In water hydraulic piston pump, poor lubrication is more likely to happen than in oil hydraulic one because of difference in properties between water and oil. So there are some key problems such as corrosive wear and erosion, which are investigated briefly. Many new materials have been developed, which give longer life expectancies with water without corrosion and erosion. A new type of seawater hydraulic piston pumps with better suction characteristics had been developed at HUST. Much of this research has concentrated on new materials, structure and experiments, which are also specially introduced.展开更多
The(Cu−10Sn)−Ni−MoS2 composites,prepared by powder metallurgy,were studied for the effects of Ni-coated MoS2 on the microstructure,mechanical properties and lubricating properties.The mechanism of effects of Ni and Mo...The(Cu−10Sn)−Ni−MoS2 composites,prepared by powder metallurgy,were studied for the effects of Ni-coated MoS2 on the microstructure,mechanical properties and lubricating properties.The mechanism of effects of Ni and MoS2 on the properties of composites was analyzed through a comparative experiment by adding Ni and MoS2 separately.The results show that the nickel wrapping around the MoS2 particles decreases the reaction rate of MoS2 with the copper matrix,and greatly improves the bonding of the matrix.The composites with 12 wt.%Ni-coated MoS2(C12)show the optimum performance including the mechanical properties and tribological behaviors.Under oil lubrication conditions,the friction coefficient is 0.0075 with a pressure of 8 MPa and a linear velocity of 0.25 m/s.The average dry friction coefficient,sliding against 40Cr steel disc,is measured to be 0.1769 when the linear velocity and pressure are 0.25 m/s and 4 MPa,respectively.展开更多
Silver based composites containing different amounts of WS2were prepared by hot-pressing method and their tribologicalbehaviors were investigated against coin silver under humid air,dry nitrogen and vacuum on a ball-o...Silver based composites containing different amounts of WS2were prepared by hot-pressing method and their tribologicalbehaviors were investigated against coin silver under humid air,dry nitrogen and vacuum on a ball-on-disk tester with normal load of5N.The components of composites,microstructure of debris and worn surface were characterized using XRD SEM,EDS and XPS.It is demonstrated that environmental conditions significantly affect the tribological behavior of silver based composites.The frictioncoefficient is the highest in humid air,and the lowest in dry nitrogen.It is found that the friction and wear behavior of the compositesare strongly depended on the characteristics of the lubrication film forming in different operating environments,such as thicknessand composition.In addition,it is indicated that the dominant wear mechanisms of silver based composites are abrasive wear anddelamination under different conditions.展开更多
The tribological behaviors of Cu-15Ni-8Sn/graphite composites with the graphite content of 38 vol.%against AISI321 stainless steel under dry-sliding,deionized water and sea water were investigated on a block-on-ring c...The tribological behaviors of Cu-15Ni-8Sn/graphite composites with the graphite content of 38 vol.%against AISI321 stainless steel under dry-sliding,deionized water and sea water were investigated on a block-on-ring configuration.The results indicated that the friction coefficient was the lowest under dry-sliding,and the highest in deionized water.The wear rate decreased to reach the minimum value of 1.39×10-15 m3/(N·m)in sea water and in deionized water,it increased to the maximum value of 5.56×10-15 m3/(N·m).The deionized water hindered the formation of tribo-oxide layer and lubricating film,which resulted in the largest friction coefficient and wear rate.In sea water,however,the corrosion products comprised of oxides,hydroxides and chlorides were found on the worn surface,and the compacted layer composed of corrosion products and graphite played an important role in keeping the excellent wear resistance.It was elucidated that the tribological behaviors of Cu-15Ni-8Sn/graphite composite were powerful influenced by the friction environments.展开更多
The AA6061-10 wt.%B4 C mono composite, AA6061-10 wt.%B4 C-Gr(Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061-10 wt.%B4 C-Mo S2 hybrid composites containing 2.5, 5, and 7.5 wt.%...The AA6061-10 wt.%B4 C mono composite, AA6061-10 wt.%B4 C-Gr(Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061-10 wt.%B4 C-Mo S2 hybrid composites containing 2.5, 5, and 7.5 wt.% Mo S2 particles were fabricated through stir casting. The dry sliding tribological behaviors of the mono composite and hybrid composites were studied as a function of temperature on high temperature pin-on-disc tribotester against EN 31 counterface. The wear rate and friction coefficient of the Gr-reinforced and Mo S2-reinforced hybrid composites decreased in the temperature range of 30-100 ℃ due to the combined lubrication offered by the wear protective layer and its solid lubricant phase. Scanning electron microscopy(SEM) observation of the worn pin surface revealed severe adhesion, delamination, and abrasion wear mechanisms at temperatures of 150, 200, and 250 ℃, respectively. At 150 ℃, transmission electron microscopy(TEM) observation of the hybrid composites revealed the formation of deformation bands due to severe plastic deformation and fine crystalline structure due to dynamic recrystallization.展开更多
In order to determine the effect of heat treatment on the mechanical and wear properties of Zn−40Al−2Cu−2Si alloy,different heat treatments including homogenization followed by air-cooling(H1),homogenization followed ...In order to determine the effect of heat treatment on the mechanical and wear properties of Zn−40Al−2Cu−2Si alloy,different heat treatments including homogenization followed by air-cooling(H1),homogenization followed by furnace-cooling(H2),stabilization(T5)and quench−aging(T6 and T7)were applied.The effects of these heat treatments on the mechanical and tribological properties of the alloy were studied by metallography and,mechanical and wear tests in comparison with SAE 65 bronze.The wear tests were performed using a block on cylinder type test apparatus.The hardness,tensile strength and compressive strength of the alloy increase by the application of H1 and T6 heat treatments,and all the heat treatments except T6,increase its elongation to fracture.H1,T5 and T6 heat treatments cause a reduction in friction coefficient and wear volume of the alloy.However,this alloy exhibits the lowest friction coefficient and wear volume after T6 heat treatment.Therefore,T6 heat treatment appears to be the best process for the lubricated tribological applications of this alloy at a pressure of 14 MPa.However,Zn−40Al−2Cu−2Si alloy in the as-cast and heat-treated conditions shows lower wear loss or higher wear resistance than the bronze.展开更多
A highly ordered porous alumina template with pores of 45 nm in diameter was synthesized by a two-step electrochemical anodizing process. The influence of pore-enlargement treatment on the porous structure and tribolo...A highly ordered porous alumina template with pores of 45 nm in diameter was synthesized by a two-step electrochemical anodizing process. The influence of pore-enlargement treatment on the porous structure and tribological properties of the film was investigated, and ultrasonic impregnation technology was applied on it to form self-lubricating surface. The structure of the self-lubricating film and its tribological properties were investigated in detail. It can be concluded that the optimum time of pore-enlargement treatment is 20 min. The diameter of the pores and the surface porosity of the film are about 70 nm and 30%, respectively, while the film maintains the property of its high hardness. Under the same friction condition, the frictional coefficient of the self-lubricating film is 0. 18, much lower than that of the anodic aluminum oxide template, which is 0.52. In comparison with the lubricating surface of non-porous dense anodic aluminum oxide template, the lubricating surface fabricated by the ultrasonic impregnation method on the porous anodic aluminum oxide template keeps longer period with low friction coefficient. SEM examination shows that some C60 particles have been embedded in ultrasonic impregnation technology. the nanoholes of the anodic aluminum oxide template by the展开更多
The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies ...The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies and chemical species of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS), respectively. The test results indicated that the three fatty acyl amino acids could effectively improve the anti-wear and friction-reducing abilities of the HVI 350 mineral oil. The improvement in anti-wear and friction-reducing abilities of the mineral oil by the related amino acids was mainly ascribed to the formation of a composite boundary lubrication film due to the adsorption of amino acids on the friction surfaces.展开更多
The influence of MoS2 on the tribology characteristic parameter of Ni60A/MoS2 composite lubricating coating was researched on the UMT-2 fretting abrasion tester (USA) The result shows that with increasing content of...The influence of MoS2 on the tribology characteristic parameter of Ni60A/MoS2 composite lubricating coating was researched on the UMT-2 fretting abrasion tester (USA) The result shows that with increasing content of MoS2, the hardness curve of the composite coating decreases and the trend accelerates. Under the same experimental conditions, the mass loss of plasma spray composite coating without adding MoS2 iS 1.27×10^-2 mg. When the amount of MoS2 reaches 35%, the mass loss is 0.96×10^-2 mg. It can be seen that adding MoS2 phase can improve the wear resistance, the amplitude of which is close to 30%. The friction coefficient of plasma spray composite coating without adding MoS2 is 0.23. Adding MoSz could decrease the friction coefficient of the coating and presents a downtrend. When the mass fraction is 35%, the friction coefficient is the smallest (0.13), and the range is doubled.展开更多
A novel lubricating oil additive dodecoxyl barium borate was synthesized. The product was characterized by FTIR, elemental analysis, thermo-gravimetric analysis (TGA), and scanning electron microscopy (SEM). Four-...A novel lubricating oil additive dodecoxyl barium borate was synthesized. The product was characterized by FTIR, elemental analysis, thermo-gravimetric analysis (TGA), and scanning electron microscopy (SEM). Four-ball tests showed that the addition of a certain concentration of the additive to rapeseed oil could effectively increase both the load-carrying capacity (PB value), resistance to wear, and friction-reducing abilities. SEM observations confirmed that the additive could result in a reduced diameter of the wear scar.展开更多
Tribological properties of 150 SN mineral oil and the oils doped with different contents of zinc butyloctyldithiophosphate(T202) under magnetic field or non-magnetic field were evaluated on a four-ball tribotester by ...Tribological properties of 150 SN mineral oil and the oils doped with different contents of zinc butyloctyldithiophosphate(T202) under magnetic field or non-magnetic field were evaluated on a four-ball tribotester by applying an external magnetic field around the friction region. Moreover, the morphology and the tribochemical characteristics of worn surfaces were examined by a scanning electron microscope(SEM) and an X-ray photoelectron spectrometer(XPS). Then the lubrication mechanisms were discussed. The tribological test results indicated that the wear scar diameters(WSDs) of steel balls lubricated by the T202-containing lubricating oils and the friction coefficients of the corresponding oil under magnetic field were smaller than those without magnetic affection. The worn surface lubricated with the T202-formulated oils in a magnetic field was smoother than that obtained under the normal condition. Furthermore, the results of XPS analysis indicated that tribochemical films on the surfaces lubricated with T202-doped oils were mainly composed of compounds such as FeSO_4, FeS and ZnS. The atomic concentrations of oxygen, sulfur, iron, zinc and phosphorus species identified in T202 under magnetic field were higher than those without magnetic impact. It can be inferred that the improved anti-wear and friction-reducing ability of T202-doped oils was attributed to the promoted tribochemical reactions and the modification of the worn surfaces induced by magnetic field.展开更多
Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly...Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly from 1.7×10^(-7) to 9.8× 10^(-7) mm^3/mm under the load lower than 300 N, and then increased dramatically to the climax of 216×10^(-7) mm^3/mm under the load over 300 N, which indicated the transition of wear mechanism with the increase of applied load. The wear mechanism mainly was plastic deformation and abrasive wear under the load less than 300 N. As the applied load was more than 300 N, the wear mechanism of Cu-15Ni-8Sn alloy primarily was delamination wear. Besides, the transition can also be confirmed from the different morphologies of worn surface, subsurface and wear debris. It is distinctly indicated that the appearance of flaky debris at the applied load over 300 N may be a critical point for the change of wear mechanism.展开更多
A novel lubricating oil additive 3-((2-(2-hydroxyethyl)-1,3,2,6-dioxazaborocan-6-yloxy)methyl) benzo[d] thiazole-2(3H)-thione(BTD) was synthesized.The product was characterized by FTIR,elemental analysis,and thermogra...A novel lubricating oil additive 3-((2-(2-hydroxyethyl)-1,3,2,6-dioxazaborocan-6-yloxy)methyl) benzo[d] thiazole-2(3H)-thione(BTD) was synthesized.The product was characterized by FTIR,elemental analysis,and thermogravimetric analysis(TGA).Four-ball tribological tests showed that the addition of a definite concentration of this additive to rapeseed oil could effectively increase both the load-carrying capacity,resistance to wear,and friction-reducing abilities of the oil.Scanning electron microscopy(SEM) observations have confirmed that the additive could result in a reduced diameter of the wear scar.展开更多
By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy ...By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS), the tribological mechanisms of these additives were studied. In air, O_2 can react with metal to form metal oxide that can protect the surfaces of rubbing pair during the tribological tests. According to the theory of the competitive adsorption, the function of some active elements is weakened. In a vacuum environment, the additives contributed more to the lubrication performance. The sulfur-containing additives could react with Fe to produce Fe Sx and "M—C" bonds("M" represents metal). They both had contributions to the lubrication. As for the phosphorus-containing additives, they only generated the phosphates during the tests. When the sulfur and phosphorus-containing additives were applied, the generated phosphates and Fe Sx had the primary contribution to the lubrication performance during the tests.展开更多
The combined effect of boundary layer formation and surface smoothing on friction and wear rate of metallic surfaces under lubricated point contact condition was investigated. The double trend of friction coefficient ...The combined effect of boundary layer formation and surface smoothing on friction and wear rate of metallic surfaces under lubricated point contact condition was investigated. The double trend of friction coefficient variations was revealed during running-in and sub-running-in processes. The evolution of surface topography was measured on-site using white-light interference profilometer and analyzed using bearing area curves. Comprehensive theoretical equations that explicitly express the contributions of boundary friction, adhesive friction and wear have been derived, and results obtained by these equations were compared with experimental observations. It is concluded that the theoretical models are quantitatively adequate to describe the combined effect of surface smoothing due to mechanical wear and formation of boundary films on the changes in friction and wear rate during normal running-in processes.展开更多
Oil-in-water (O/W) emulsions are widely used in metal working such as hot rolling and cutting. Three kinds of O/W emulsions with low oil concentration were prepared which include conventional emulsion (CE), miniem...Oil-in-water (O/W) emulsions are widely used in metal working such as hot rolling and cutting. Three kinds of O/W emulsions with low oil concentration were prepared which include conventional emulsion (CE), miniemulsion (MNE) and microemulsion (ME). The lubricating properties of O/W emulsions with low oil concentration were investigated using the tribological testers and the thin film interferometry based on the relative optical interference intensity method. The tribological test results under boundary lubrication show that the friction coefficient and the total losing weight can be clearly seen: CE 〈 MNE 〈 ME. The lubricating film thicknesses under elastohydrodynarnic lubrication and thin film lubrication show that a relationship of the film formation abilities: CE 〉 MNE 〉 ME. Competitive wetting behavior of water and oil on solid surface was confirmed to play an important role in the film formation and tribological behaviors of O/W emulsion.展开更多
基金Supported by the Shanghai Municipal Education Commission(06FZ008)Shanghai Municipal Education Commission Key Disciplines(J50603)
文摘In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.
基金Project (JPPT-115-5-1759) supported by the National Defense Science and Technology Industry Committee of China Project (20090162120080) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010FJ3012) supported by the Program of Science and Technology of Hunan Province, China
文摘Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.
文摘Water hydraulic systems have provoked major interest because of the human friendly and environmental safety aspects. Piston pump is one of the most frequently used hydraulic units in recent engineering technique. In water hydraulic piston pump, poor lubrication is more likely to happen than in oil hydraulic one because of difference in properties between water and oil. So there are some key problems such as corrosive wear and erosion, which are investigated briefly. Many new materials have been developed, which give longer life expectancies with water without corrosion and erosion. A new type of seawater hydraulic piston pumps with better suction characteristics had been developed at HUST. Much of this research has concentrated on new materials, structure and experiments, which are also specially introduced.
基金Projects(51371099,51501091)supported by the National Natural Science Foundation of China。
文摘The(Cu−10Sn)−Ni−MoS2 composites,prepared by powder metallurgy,were studied for the effects of Ni-coated MoS2 on the microstructure,mechanical properties and lubricating properties.The mechanism of effects of Ni and MoS2 on the properties of composites was analyzed through a comparative experiment by adding Ni and MoS2 separately.The results show that the nickel wrapping around the MoS2 particles decreases the reaction rate of MoS2 with the copper matrix,and greatly improves the bonding of the matrix.The composites with 12 wt.%Ni-coated MoS2(C12)show the optimum performance including the mechanical properties and tribological behaviors.Under oil lubrication conditions,the friction coefficient is 0.0075 with a pressure of 8 MPa and a linear velocity of 0.25 m/s.The average dry friction coefficient,sliding against 40Cr steel disc,is measured to be 0.1769 when the linear velocity and pressure are 0.25 m/s and 4 MPa,respectively.
文摘Silver based composites containing different amounts of WS2were prepared by hot-pressing method and their tribologicalbehaviors were investigated against coin silver under humid air,dry nitrogen and vacuum on a ball-on-disk tester with normal load of5N.The components of composites,microstructure of debris and worn surface were characterized using XRD SEM,EDS and XPS.It is demonstrated that environmental conditions significantly affect the tribological behavior of silver based composites.The frictioncoefficient is the highest in humid air,and the lowest in dry nitrogen.It is found that the friction and wear behavior of the compositesare strongly depended on the characteristics of the lubrication film forming in different operating environments,such as thicknessand composition.In addition,it is indicated that the dominant wear mechanisms of silver based composites are abrasive wear anddelamination under different conditions.
基金Project(51674304) supported by the National Natural Science Foundation of ChinaProject(19B430013) supported by the Key Scientific Research Projects of Higher Education Institutions in Henan Province,ChinaProject(2017BSJJ013) supported by the Doctor Research Foundation of Zhengzhou University of Light Industry,China
文摘The tribological behaviors of Cu-15Ni-8Sn/graphite composites with the graphite content of 38 vol.%against AISI321 stainless steel under dry-sliding,deionized water and sea water were investigated on a block-on-ring configuration.The results indicated that the friction coefficient was the lowest under dry-sliding,and the highest in deionized water.The wear rate decreased to reach the minimum value of 1.39×10-15 m3/(N·m)in sea water and in deionized water,it increased to the maximum value of 5.56×10-15 m3/(N·m).The deionized water hindered the formation of tribo-oxide layer and lubricating film,which resulted in the largest friction coefficient and wear rate.In sea water,however,the corrosion products comprised of oxides,hydroxides and chlorides were found on the worn surface,and the compacted layer composed of corrosion products and graphite played an important role in keeping the excellent wear resistance.It was elucidated that the tribological behaviors of Cu-15Ni-8Sn/graphite composite were powerful influenced by the friction environments.
文摘The AA6061-10 wt.%B4 C mono composite, AA6061-10 wt.%B4 C-Gr(Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061-10 wt.%B4 C-Mo S2 hybrid composites containing 2.5, 5, and 7.5 wt.% Mo S2 particles were fabricated through stir casting. The dry sliding tribological behaviors of the mono composite and hybrid composites were studied as a function of temperature on high temperature pin-on-disc tribotester against EN 31 counterface. The wear rate and friction coefficient of the Gr-reinforced and Mo S2-reinforced hybrid composites decreased in the temperature range of 30-100 ℃ due to the combined lubrication offered by the wear protective layer and its solid lubricant phase. Scanning electron microscopy(SEM) observation of the worn pin surface revealed severe adhesion, delamination, and abrasion wear mechanisms at temperatures of 150, 200, and 250 ℃, respectively. At 150 ℃, transmission electron microscopy(TEM) observation of the hybrid composites revealed the formation of deformation bands due to severe plastic deformation and fine crystalline structure due to dynamic recrystallization.
基金This work was supported by Scientific Research Projects Coordination Unit of Karadeniz Technical University,Turkey(No.2008.112.03.1).
文摘In order to determine the effect of heat treatment on the mechanical and wear properties of Zn−40Al−2Cu−2Si alloy,different heat treatments including homogenization followed by air-cooling(H1),homogenization followed by furnace-cooling(H2),stabilization(T5)and quench−aging(T6 and T7)were applied.The effects of these heat treatments on the mechanical and tribological properties of the alloy were studied by metallography and,mechanical and wear tests in comparison with SAE 65 bronze.The wear tests were performed using a block on cylinder type test apparatus.The hardness,tensile strength and compressive strength of the alloy increase by the application of H1 and T6 heat treatments,and all the heat treatments except T6,increase its elongation to fracture.H1,T5 and T6 heat treatments cause a reduction in friction coefficient and wear volume of the alloy.However,this alloy exhibits the lowest friction coefficient and wear volume after T6 heat treatment.Therefore,T6 heat treatment appears to be the best process for the lubricated tribological applications of this alloy at a pressure of 14 MPa.However,Zn−40Al−2Cu−2Si alloy in the as-cast and heat-treated conditions shows lower wear loss or higher wear resistance than the bronze.
基金Project(2007CB607605) supported by the National Basic Research Program of China
文摘A highly ordered porous alumina template with pores of 45 nm in diameter was synthesized by a two-step electrochemical anodizing process. The influence of pore-enlargement treatment on the porous structure and tribological properties of the film was investigated, and ultrasonic impregnation technology was applied on it to form self-lubricating surface. The structure of the self-lubricating film and its tribological properties were investigated in detail. It can be concluded that the optimum time of pore-enlargement treatment is 20 min. The diameter of the pores and the surface porosity of the film are about 70 nm and 30%, respectively, while the film maintains the property of its high hardness. Under the same friction condition, the frictional coefficient of the self-lubricating film is 0. 18, much lower than that of the anodic aluminum oxide template, which is 0.52. In comparison with the lubricating surface of non-porous dense anodic aluminum oxide template, the lubricating surface fabricated by the ultrasonic impregnation method on the porous anodic aluminum oxide template keeps longer period with low friction coefficient. SEM examination shows that some C60 particles have been embedded in ultrasonic impregnation technology. the nanoholes of the anodic aluminum oxide template by the
基金the financial support from National Natural Science Foundation of China(project No.50975282)Chongqing Science Foundation for Outstanding Youth(project No. CSTC2008,BA4037)
文摘The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies and chemical species of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS), respectively. The test results indicated that the three fatty acyl amino acids could effectively improve the anti-wear and friction-reducing abilities of the HVI 350 mineral oil. The improvement in anti-wear and friction-reducing abilities of the mineral oil by the related amino acids was mainly ascribed to the formation of a composite boundary lubrication film due to the adsorption of amino acids on the friction surfaces.
基金Supported by the National Key Basic Research Development Program of China(973 Program)(2007CB607605)the National Natural Science Foundation of China(50965008)
文摘The influence of MoS2 on the tribology characteristic parameter of Ni60A/MoS2 composite lubricating coating was researched on the UMT-2 fretting abrasion tester (USA) The result shows that with increasing content of MoS2, the hardness curve of the composite coating decreases and the trend accelerates. Under the same experimental conditions, the mass loss of plasma spray composite coating without adding MoS2 iS 1.27×10^-2 mg. When the amount of MoS2 reaches 35%, the mass loss is 0.96×10^-2 mg. It can be seen that adding MoS2 phase can improve the wear resistance, the amplitude of which is close to 30%. The friction coefficient of plasma spray composite coating without adding MoS2 is 0.23. Adding MoSz could decrease the friction coefficient of the coating and presents a downtrend. When the mass fraction is 35%, the friction coefficient is the smallest (0.13), and the range is doubled.
文摘A novel lubricating oil additive dodecoxyl barium borate was synthesized. The product was characterized by FTIR, elemental analysis, thermo-gravimetric analysis (TGA), and scanning electron microscopy (SEM). Four-ball tests showed that the addition of a certain concentration of the additive to rapeseed oil could effectively increase both the load-carrying capacity (PB value), resistance to wear, and friction-reducing abilities. SEM observations confirmed that the additive could result in a reduced diameter of the wear scar.
基金financial support provided by the National Natural Science Foundation of China(Project No.51375491)the Natural Science Foundation of Chongqing(Project No.CSTC,2014JCYJAA50021)the Innovation Fund of Logistical Engineering University(Project No.YZ13-43703)
文摘Tribological properties of 150 SN mineral oil and the oils doped with different contents of zinc butyloctyldithiophosphate(T202) under magnetic field or non-magnetic field were evaluated on a four-ball tribotester by applying an external magnetic field around the friction region. Moreover, the morphology and the tribochemical characteristics of worn surfaces were examined by a scanning electron microscope(SEM) and an X-ray photoelectron spectrometer(XPS). Then the lubrication mechanisms were discussed. The tribological test results indicated that the wear scar diameters(WSDs) of steel balls lubricated by the T202-containing lubricating oils and the friction coefficients of the corresponding oil under magnetic field were smaller than those without magnetic affection. The worn surface lubricated with the T202-formulated oils in a magnetic field was smoother than that obtained under the normal condition. Furthermore, the results of XPS analysis indicated that tribochemical films on the surfaces lubricated with T202-doped oils were mainly composed of compounds such as FeSO_4, FeS and ZnS. The atomic concentrations of oxygen, sulfur, iron, zinc and phosphorus species identified in T202 under magnetic field were higher than those without magnetic impact. It can be inferred that the improved anti-wear and friction-reducing ability of T202-doped oils was attributed to the promoted tribochemical reactions and the modification of the worn surfaces induced by magnetic field.
基金Project(2016YFB0301402)supported by the National Key Research and Development Program of ChinaProject(CSU20151024)supported by the Innovation-driven Plan in Central South University,China
文摘Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly from 1.7×10^(-7) to 9.8× 10^(-7) mm^3/mm under the load lower than 300 N, and then increased dramatically to the climax of 216×10^(-7) mm^3/mm under the load over 300 N, which indicated the transition of wear mechanism with the increase of applied load. The wear mechanism mainly was plastic deformation and abrasive wear under the load less than 300 N. As the applied load was more than 300 N, the wear mechanism of Cu-15Ni-8Sn alloy primarily was delamination wear. Besides, the transition can also be confirmed from the different morphologies of worn surface, subsurface and wear debris. It is distinctly indicated that the appearance of flaky debris at the applied load over 300 N may be a critical point for the change of wear mechanism.
基金supported by the Ministry of Education of Hunan province (09C161,10C0464,and 09C162)
文摘A novel lubricating oil additive 3-((2-(2-hydroxyethyl)-1,3,2,6-dioxazaborocan-6-yloxy)methyl) benzo[d] thiazole-2(3H)-thione(BTD) was synthesized.The product was characterized by FTIR,elemental analysis,and thermogravimetric analysis(TGA).Four-ball tribological tests showed that the addition of a definite concentration of this additive to rapeseed oil could effectively increase both the load-carrying capacity,resistance to wear,and friction-reducing abilities of the oil.Scanning electron microscopy(SEM) observations have confirmed that the additive could result in a reduced diameter of the wear scar.
基金Financial support from the SINOPEC Research Program(No.ST13164-19]) is gratefully acknowledged
文摘By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS), the tribological mechanisms of these additives were studied. In air, O_2 can react with metal to form metal oxide that can protect the surfaces of rubbing pair during the tribological tests. According to the theory of the competitive adsorption, the function of some active elements is weakened. In a vacuum environment, the additives contributed more to the lubrication performance. The sulfur-containing additives could react with Fe to produce Fe Sx and "M—C" bonds("M" represents metal). They both had contributions to the lubrication. As for the phosphorus-containing additives, they only generated the phosphates during the tests. When the sulfur and phosphorus-containing additives were applied, the generated phosphates and Fe Sx had the primary contribution to the lubrication performance during the tests.
基金partially supported by NSFC under grant No. 51635009by the State Administra-tion of Foreign Expert Affairs under grant No. DL2017QHDX001
文摘The combined effect of boundary layer formation and surface smoothing on friction and wear rate of metallic surfaces under lubricated point contact condition was investigated. The double trend of friction coefficient variations was revealed during running-in and sub-running-in processes. The evolution of surface topography was measured on-site using white-light interference profilometer and analyzed using bearing area curves. Comprehensive theoretical equations that explicitly express the contributions of boundary friction, adhesive friction and wear have been derived, and results obtained by these equations were compared with experimental observations. It is concluded that the theoretical models are quantitatively adequate to describe the combined effect of surface smoothing due to mechanical wear and formation of boundary films on the changes in friction and wear rate during normal running-in processes.
基金supported by the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20100007120010)the Tribology Science Fund of State Key Laboratory of Tribology (Grant No. SKLTKF11A05)Science Foundation of China University of Petroleum,Beijing (GrantNo. KYJJ2012-04-17)
文摘Oil-in-water (O/W) emulsions are widely used in metal working such as hot rolling and cutting. Three kinds of O/W emulsions with low oil concentration were prepared which include conventional emulsion (CE), miniemulsion (MNE) and microemulsion (ME). The lubricating properties of O/W emulsions with low oil concentration were investigated using the tribological testers and the thin film interferometry based on the relative optical interference intensity method. The tribological test results under boundary lubrication show that the friction coefficient and the total losing weight can be clearly seen: CE 〈 MNE 〈 ME. The lubricating film thicknesses under elastohydrodynarnic lubrication and thin film lubrication show that a relationship of the film formation abilities: CE 〉 MNE 〉 ME. Competitive wetting behavior of water and oil on solid surface was confirmed to play an important role in the film formation and tribological behaviors of O/W emulsion.