The tribological behaviors of carbon block sliding against copper ring with and without electric current applied were investigated by using an advanced multifunctional friction and wear tester, and the electric-arc be...The tribological behaviors of carbon block sliding against copper ring with and without electric current applied were investigated by using an advanced multifunctional friction and wear tester, and the electric-arc behaviors were analyzed in detail. The results show that the normal load is one of the main controlling factors for generation of electric arc during friction process with electric current applied. The strength of electric arc is enhanced with the decrease of normal loads and the increase of electric currents. The unstable friction process and the fluctuated dynamic friction coefficients are strongly dependent upon the electric arc. The wear volumes and the wear mechanism of carbon brush were affected by the electric arc obviously. As no electric arc occurs, no clear discrepancy of the wear volumes of the carbon samples with and without electric current applied could be detected. While the wear mechanisms are mainly mechanical wear. However, under the condition of the electric arc appearance, the wear volume of carbon with electric current applied increases much more rapidly than that without electric current applied and also increases obviously with the increase of electric current strengths and the decrease of normal loads. The wear mechanisms of carbon block are mainly electric arc ablation accompanying with adhesive wear and material transferring.展开更多
Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribologi...Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.展开更多
In order to improve the tribological properties of titanium alloys,the in-situ TiN coatings were prepared by electrospark deposition(ESD) on the surface of TC11 titanium alloy.The effects of nitrogen flux on the mic...In order to improve the tribological properties of titanium alloys,the in-situ TiN coatings were prepared by electrospark deposition(ESD) on the surface of TC11 titanium alloy.The effects of nitrogen flux on the microstructure and tribological properties of TiN coatings were investigated.The results show that the coating is relative thin when the nitrogen flux is small and mainly consists of Ti2N,α-Ti,Ti O and TiN phases,and the metastable phase of Ti2N is developed due to the rapid solidification of ESD.While in excessive nitrogen flux condition,many micro-cracks and holes might be generated in the coating.In moderate nitrogen flux,the coating is mainly composed of TiN phase,and is dense and uniform(50-55 μm).The average hardness is HV0.2 1165.2,which is 3.4 times that of the TC11 substrate.The TiN coatings prepared in moderate nitrogen flux perform the best wear resistance.The wear loss of the coating is 0.4 mg,which is 2/9 that of the TC11 substrate.The main wear mechanisms of the coatings are micro-cutting wear accompanied by multi-plastic deformation wear.展开更多
Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffracti...Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technique. The tribological properties were tested through sliding against AISI52100 steel ball at different normal loads and sliding speeds. Besides, the morphologies of the worn surfaces and wear debris were analyzed by scanning electron microscopy (SEM) and three dimensional (3D) non-contact surface mapping. The results show that the prepared Fe-based coating has a high hardness of about 860 HV0.2 and exhibits an average wear rate of (0.70-2.32)×10-6 mm3/(N-m), showing that the Fe-based coating can greatly improve the wear resistance of pure Ti substrate. The wear mechanism of the coating involves moderate adhesive and abrasive wear.展开更多
The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microsc...The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microscopy(OM), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). The experimental results indicate that the alloy refined by Al-5Ti-B alloy exhibits equiaxed α(Al) dendrites and performs better wear resistance compared with the alloy without the grain refiner. Moreover, the addition of Mn can change the β-Al5 Fe Si phase to α-Al(Mn,Fe)Si phase and reduce the possibility of crack formation, thus improving the wear resistance. Sn added to A356 aluminum alloy forms Mg2 Sn precipitates after heat treatment. Therefore, the unrealizable precipitation hardening Mg2 Si phase and the softening β-Sn phase can reduce the hardness of the alloy, and finally reduce the wear resistance.展开更多
The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in ...The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in static air were investigated. The comparison was made with the coating without nano-particles. The results show that the wear mechanism of the NiCoCrAlY coatings with nano-particles, like the coating without nano-particles, is the delamination wear due to the strong plastic deformation and oxidative wear. However, the frictional coefficient of the coatings increases and presents the decrease trend with the increase of sliding distance after adding nano-particles. Moreover, the wear rate of the coatings with nano-particles is only 34.0%-64.5% of the coating without nano-particles. Among the three nano-particles, the improvement of nano-SiC on the high temperature wear resistance of the coating is the most significant.展开更多
Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of ...Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of load, sliding speed and long time continuous friction on friction and wear properties of Al-5%Si-Al2O3 composites were investigated, respectively. Wear surface and wear mechanism of Al-5%Si-Al2O3 composites were studied by Quanta 200 FE-SEM. Results showed that with load increasing, wear loss and coefficient of friction increased. With sliding speed going up, the surface temperature of sample made the rate of the producing of oxidation layer increase, while wear loss and coefficient of friction decreased. With the sliding distance increasing, coefficient of friction increased because the adhesive wear mechanism occurred in the initial stage, then formation and destruction of the oxide layer on the surface of the sample tended to a dynamic equilibrium, the surface state of the sample was relatively stable and so did the coefficient of friction. The experiment shows that the main wear mechanism of Al-5%Si-Al2O3 composites includes abrasive wear, adhesive wear and oxidation wear.展开更多
In order to reduce the friction coefficient of Ni-base alloy coating and further improve its wear resistance,Ni-base alloy composite coatings modified by both graphite and TiC particles were prepared by plasma spray t...In order to reduce the friction coefficient of Ni-base alloy coating and further improve its wear resistance,Ni-base alloy composite coatings modified by both graphite and TiC particles were prepared by plasma spray technology on the surface of 45 carbon steel.The results show that friction coefficient of the composite coating is 47.45% lower than that of the Ni-base alloy coating,and the wear mass loss is reduced by 59.1%.Slip lines and severe adhesive plastic deformation are observed on the worn surface of the Ni-base alloy coating,indicating that the wear mechanisms of the Ni-base alloy coating are multi-plastic deformation wear and adhesive wear.A soft transferred layer abundant in graphite and ferric oxide is developed on the worn surface of the composite coating,which reduces the friction coefficient and wear loss in a great deal.The main wear mechanism of the composite coating is fatigue delamination of the transferred layer.展开更多
A Mg-14.28Gd-2.44Zn-0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribologica...A Mg-14.28Gd-2.44Zn-0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribological behaviors of the as-cast and solution-treated alloys were investigated under oil lubricant condition by pin-on-disc configuration. The wear loss and friction coefficients were measured at a load of 40 N and sliding speeds of 30-300 mm/s with a sliding distance of 5000 m at room temperature. The results show that the as-cast alloy is mainly composed ofα-Mg solid solution, the lamellar 14H-type long period stacking ordered (LPSO) structure within matrix, andβ-[(Mg,Zn)3Gd] phase. However, most of theβ-phase transforms to X-phase with 14H-type LPSO structure after solution heat treatment at 773 K for 35 h (T4). The solution-treated alloy presents low wear-resistance, because the hard β-phase is converted into thermally-stable, ductile and soft X-Mg12GdZn phase with LPSO structure in the alloy.展开更多
Ceramic coatings were fabricated on aluminum doped with different concentrations of TiO2 nano-additive. alloy substrates by micro-arc oxidation (MAO) in silicate electrolytes Effects of nano-additive concentration o...Ceramic coatings were fabricated on aluminum doped with different concentrations of TiO2 nano-additive. alloy substrates by micro-arc oxidation (MAO) in silicate electrolytes Effects of nano-additive concentration on the structural and mechanical properties of the MAO coatings were analyzed. The results revealed that some nano-particle were incorporated into the resulting coating during the MAO process, while there was a reasonable concentration for the TiO2 nano-additive. With increasing the nano-additive concentration to 3.2 g/L, the adhesion value increased, while mean friction coefficient and mass loss decreased. A further increase of nano-additive deteriorated the adhesion and mean friction coefficient values, which was consistent with the micro-hardness tests.展开更多
In order to improve the tribology behavior in aviation kerosene, molybdenum (Mo) modified layers were fabricated on Ti6Al4V base alloy using a double-glow plasma surface alloying technique. The morphology, microstru...In order to improve the tribology behavior in aviation kerosene, molybdenum (Mo) modified layers were fabricated on Ti6Al4V base alloy using a double-glow plasma surface alloying technique. The morphology, microstructure, microhardness and element depth distribution of the Mo modified layers were studied. The tribology properties of Ti6Al4V base alloy, Mo modified layers and 5CrMnMo tool steel sliding with GCr15 steel or QSn4-3 copper alloy counterparts in aviation kerosene were comparatively researched. The effect of roughness on the sliding wear behavior was discussed. The results indicate that the Mo modified layers with polishing treatments not only reduce the friction coefficient of Ti6Al4V base, but also enhance the wear resistance of the counterparts. The Mo modified layers have better tribology behavior than 5CrMnMo steel. It is also found that the wear volume loss of the counterparts is proportional to the value of roughness of Mo modified layers, which is related directly to the ploughing wear between micro convex bodies of the layers and counterparts.展开更多
The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and trib...The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.展开更多
The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and ...The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and X-ray photoelectron spectroscopy.The results show that the friction logs are mixed fretting regime and gross slip regime with the magnitudes of displacement of 10 and 20 μm,respectively.Severe wear and friction oxidation occur on the material surface.A large number of granular debris produced in the fretting process can be easily congregated and adhered at the contact zone after repeated crushes.The resultant of friction oxidation is mainly composed of Fe3O4,Fe2O3,Cr2O3 and NiO.Temperature and friction are the major factors affecting the oxidation reaction rate.The fretting friction effect can enhance the oxidation reaction activity of surface atoms of 0Cr20Ni32AlTi alloy and reduce the oxidation activation energy.As result,the oxidation reaction rate is accelerated.展开更多
In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface o...In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction.展开更多
Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under t...Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under the loads of 275 N at 25 °C, 150 N at 100 °C and 75 N at 200 °C, respectively. However, as the load is less than 50 N, the wear rate at 200 °C is lower than that at 25 °C or 100 °C. In mild wear regimes, the wear mechanisms can be classified into abrasive wear, oxidation wear and delamination wear. Delamination wear prevailed as the mild-to-severe wear transition starts to occur; the delamination occurs from the inside of matrix. Subsequently, plastic-extrusion wear as severe wear prevails accompanied with the transition. The thick and hard tribo-layer postpones the mild-to-severe wear transition due to restricting the occurrence of massive plastic deformation of worn surfaces.展开更多
Oleic acid (denoted as OA) surface-caped lanthanum borate nanorods, abbreviated as OA/LaBO3·H2O, were prepared via hydrothermal method. The microstructures of the as-prepared OA/LaBO3·H2O nanorods were chara...Oleic acid (denoted as OA) surface-caped lanthanum borate nanorods, abbreviated as OA/LaBO3·H2O, were prepared via hydrothermal method. The microstructures of the as-prepared OA/LaBO3·H2O nanorods were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The friction and wear properties of OA/LaBO3·H2O nanorods in rapeseed oil were evaluated with a four-ball tribo-tester. The results show that the as-prepared OA/LaBO3·H2O nanorods are hydrophobic and display nanorods morphology with uniform diameter of about 50 nm and length of up to 500 nm. In the meantime, OA/LaBO3·H2O nanorods can obviously improve the anti-wear and friction-reducing capacities of rapeseed oil, and the optimal anti-wear and friction-reducing properties of rapeseed oil were obtained at an OA/LaBO3·H2O content of 1% (mass fraction).展开更多
The tribological behavior of a Zr-based bulk metallic glass(BMG) was investigated using pin-on-disk sliding measurements in two different environments,i.e.,air and argon,against an yttria-stabilized zirconia counter...The tribological behavior of a Zr-based bulk metallic glass(BMG) was investigated using pin-on-disk sliding measurements in two different environments,i.e.,air and argon,against an yttria-stabilized zirconia counterface.It was found that the wear of the Zr-based BMG was reduced by more than 45% due to the removal of oxygen from the test environment at two different loads,i.e.,16 N and 23 N.The wear pins were examined using X-ray diffractometry,differential scanning calorimetry,scanning electron microscopy and optical surface profilometry.A number of abrasive particles and grooves presented on the worn surface of the pin tested in air,while a relatively smooth worn surface was observed in the specimens tested in argon.The wear mechanism of the pin worn in air was dominated by abrasive wear compared with an adhesive wear controlled process in the tests performed in argon.展开更多
The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-...The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.展开更多
Zn-Al-Cu-TiB2(ZA27-TiB2) in situ composites were fabricated via reactions between molten aluminum and mixed halide salts(K2TiF6 and KBF4) at temperature of 875 °C. The microstructure, mechanical properties an...Zn-Al-Cu-TiB2(ZA27-TiB2) in situ composites were fabricated via reactions between molten aluminum and mixed halide salts(K2TiF6 and KBF4) at temperature of 875 °C. The microstructure, mechanical properties and wear behavior of the composites were investigated. Microstructure analysis shows that fine and clean TiB2 particles distribute uniformly through the matrix. The mechanical properties of the composites increase with the increase in TiB2 content. As TiB2 content increases to 5%(mass fraction), an improvement of HB 18 in hardness and 49 MPa in ultimate tensile strength(UTS) is achieved. The overall results reveal that the composites possess low friction coefficients and the wear rate is reduced from 5.9×10-3 to 1.3×10-3 mm3/m after incorporating 5% TiB2. Friction coefficient and worn surface analysis indicate that there is a change in the wear mechanism in the initial stage of wear test after introducing in situ TiB2 particles into the matrix.展开更多
基金Project (2007CB714703) supported by the National Basic Research Program of ChinaProject (50521503) supported by the National Natural Science Foundation of ChinaProject (20050613015) supported by Research Fund for Doctoral Program of Higher Education of China
文摘The tribological behaviors of carbon block sliding against copper ring with and without electric current applied were investigated by using an advanced multifunctional friction and wear tester, and the electric-arc behaviors were analyzed in detail. The results show that the normal load is one of the main controlling factors for generation of electric arc during friction process with electric current applied. The strength of electric arc is enhanced with the decrease of normal loads and the increase of electric currents. The unstable friction process and the fluctuated dynamic friction coefficients are strongly dependent upon the electric arc. The wear volumes and the wear mechanism of carbon brush were affected by the electric arc obviously. As no electric arc occurs, no clear discrepancy of the wear volumes of the carbon samples with and without electric current applied could be detected. While the wear mechanisms are mainly mechanical wear. However, under the condition of the electric arc appearance, the wear volume of carbon with electric current applied increases much more rapidly than that without electric current applied and also increases obviously with the increase of electric current strengths and the decrease of normal loads. The wear mechanisms of carbon block are mainly electric arc ablation accompanying with adhesive wear and material transferring.
基金Project (JPPT-115-5-1759) supported by the National Defense Science and Technology Industry Committee of China Project (20090162120080) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010FJ3012) supported by the Program of Science and Technology of Hunan Province, China
文摘Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.
文摘In order to improve the tribological properties of titanium alloys,the in-situ TiN coatings were prepared by electrospark deposition(ESD) on the surface of TC11 titanium alloy.The effects of nitrogen flux on the microstructure and tribological properties of TiN coatings were investigated.The results show that the coating is relative thin when the nitrogen flux is small and mainly consists of Ti2N,α-Ti,Ti O and TiN phases,and the metastable phase of Ti2N is developed due to the rapid solidification of ESD.While in excessive nitrogen flux condition,many micro-cracks and holes might be generated in the coating.In moderate nitrogen flux,the coating is mainly composed of TiN phase,and is dense and uniform(50-55 μm).The average hardness is HV0.2 1165.2,which is 3.4 times that of the TC11 substrate.The TiN coatings prepared in moderate nitrogen flux perform the best wear resistance.The wear loss of the coating is 0.4 mg,which is 2/9 that of the TC11 substrate.The main wear mechanisms of the coatings are micro-cutting wear accompanied by multi-plastic deformation wear.
基金Project (51045004) supported by the National Natural Science Foundation of ChinaProject (2006AA03A219) supported by Hi-tech Research and Development Program of ChinaProject (YYYJ-0913) supported by Knowledge Innovation Project in Chinese Academy of Sciences
文摘Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technique. The tribological properties were tested through sliding against AISI52100 steel ball at different normal loads and sliding speeds. Besides, the morphologies of the worn surfaces and wear debris were analyzed by scanning electron microscopy (SEM) and three dimensional (3D) non-contact surface mapping. The results show that the prepared Fe-based coating has a high hardness of about 860 HV0.2 and exhibits an average wear rate of (0.70-2.32)×10-6 mm3/(N-m), showing that the Fe-based coating can greatly improve the wear resistance of pure Ti substrate. The wear mechanism of the coating involves moderate adhesive and abrasive wear.
文摘The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microscopy(OM), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). The experimental results indicate that the alloy refined by Al-5Ti-B alloy exhibits equiaxed α(Al) dendrites and performs better wear resistance compared with the alloy without the grain refiner. Moreover, the addition of Mn can change the β-Al5 Fe Si phase to α-Al(Mn,Fe)Si phase and reduce the possibility of crack formation, thus improving the wear resistance. Sn added to A356 aluminum alloy forms Mg2 Sn precipitates after heat treatment. Therefore, the unrealizable precipitation hardening Mg2 Si phase and the softening β-Sn phase can reduce the hardness of the alloy, and finally reduce the wear resistance.
基金Project(20060287019)supported by the Research Fund for Doctoral Program of Higher Education of ChinaProject(kjsmcx07001)supported by the Opening Research Fund of Jiangsu Key Laboratory of Tribology,ChinaProject(BK2010267)supported by the Jiangsu Provincial Natural Science Foundation of Jiangsu Province,China
文摘The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in static air were investigated. The comparison was made with the coating without nano-particles. The results show that the wear mechanism of the NiCoCrAlY coatings with nano-particles, like the coating without nano-particles, is the delamination wear due to the strong plastic deformation and oxidative wear. However, the frictional coefficient of the coatings increases and presents the decrease trend with the increase of sliding distance after adding nano-particles. Moreover, the wear rate of the coatings with nano-particles is only 34.0%-64.5% of the coating without nano-particles. Among the three nano-particles, the improvement of nano-SiC on the high temperature wear resistance of the coating is the most significant.
基金Project(51201143)supported by the National Natural Science Foundation of ChinaProject(SWJTU12BR004)supported by the Fundamental Research Funds for the Central Universities,China
文摘Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of load, sliding speed and long time continuous friction on friction and wear properties of Al-5%Si-Al2O3 composites were investigated, respectively. Wear surface and wear mechanism of Al-5%Si-Al2O3 composites were studied by Quanta 200 FE-SEM. Results showed that with load increasing, wear loss and coefficient of friction increased. With sliding speed going up, the surface temperature of sample made the rate of the producing of oxidation layer increase, while wear loss and coefficient of friction decreased. With the sliding distance increasing, coefficient of friction increased because the adhesive wear mechanism occurred in the initial stage, then formation and destruction of the oxide layer on the surface of the sample tended to a dynamic equilibrium, the surface state of the sample was relatively stable and so did the coefficient of friction. The experiment shows that the main wear mechanism of Al-5%Si-Al2O3 composites includes abrasive wear, adhesive wear and oxidation wear.
文摘In order to reduce the friction coefficient of Ni-base alloy coating and further improve its wear resistance,Ni-base alloy composite coatings modified by both graphite and TiC particles were prepared by plasma spray technology on the surface of 45 carbon steel.The results show that friction coefficient of the composite coating is 47.45% lower than that of the Ni-base alloy coating,and the wear mass loss is reduced by 59.1%.Slip lines and severe adhesive plastic deformation are observed on the worn surface of the Ni-base alloy coating,indicating that the wear mechanisms of the Ni-base alloy coating are multi-plastic deformation wear and adhesive wear.A soft transferred layer abundant in graphite and ferric oxide is developed on the worn surface of the composite coating,which reduces the friction coefficient and wear loss in a great deal.The main wear mechanism of the composite coating is fatigue delamination of the transferred layer.
基金Projects(51304135,50971089)supported by the National Natural Science Foundation of ChinaProject(A1420110045)supported by National Defense Basic Research Plan,China+1 种基金Project(11QH1401200)supported by the Shanghai Phospherus Program,ChinaProject(NCET-11-0329)supported by the New Century Excellent Talents in University of Ministry of Education of China
文摘A Mg-14.28Gd-2.44Zn-0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribological behaviors of the as-cast and solution-treated alloys were investigated under oil lubricant condition by pin-on-disc configuration. The wear loss and friction coefficients were measured at a load of 40 N and sliding speeds of 30-300 mm/s with a sliding distance of 5000 m at room temperature. The results show that the as-cast alloy is mainly composed ofα-Mg solid solution, the lamellar 14H-type long period stacking ordered (LPSO) structure within matrix, andβ-[(Mg,Zn)3Gd] phase. However, most of theβ-phase transforms to X-phase with 14H-type LPSO structure after solution heat treatment at 773 K for 35 h (T4). The solution-treated alloy presents low wear-resistance, because the hard β-phase is converted into thermally-stable, ductile and soft X-Mg12GdZn phase with LPSO structure in the alloy.
文摘Ceramic coatings were fabricated on aluminum doped with different concentrations of TiO2 nano-additive. alloy substrates by micro-arc oxidation (MAO) in silicate electrolytes Effects of nano-additive concentration on the structural and mechanical properties of the MAO coatings were analyzed. The results revealed that some nano-particle were incorporated into the resulting coating during the MAO process, while there was a reasonable concentration for the TiO2 nano-additive. With increasing the nano-additive concentration to 3.2 g/L, the adhesion value increased, while mean friction coefficient and mass loss decreased. A further increase of nano-additive deteriorated the adhesion and mean friction coefficient values, which was consistent with the micro-hardness tests.
基金Projects (50671085, 51171154) supported by the National Natural Science Foundation of ChinaProject (2007AA03Z521) supported by the High-tech Research and Development Program of China
文摘In order to improve the tribology behavior in aviation kerosene, molybdenum (Mo) modified layers were fabricated on Ti6Al4V base alloy using a double-glow plasma surface alloying technique. The morphology, microstructure, microhardness and element depth distribution of the Mo modified layers were studied. The tribology properties of Ti6Al4V base alloy, Mo modified layers and 5CrMnMo tool steel sliding with GCr15 steel or QSn4-3 copper alloy counterparts in aviation kerosene were comparatively researched. The effect of roughness on the sliding wear behavior was discussed. The results indicate that the Mo modified layers with polishing treatments not only reduce the friction coefficient of Ti6Al4V base, but also enhance the wear resistance of the counterparts. The Mo modified layers have better tribology behavior than 5CrMnMo steel. It is also found that the wear volume loss of the counterparts is proportional to the value of roughness of Mo modified layers, which is related directly to the ploughing wear between micro convex bodies of the layers and counterparts.
文摘The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.
基金Project (51075342) supported by the National Natural Science Foundation of ChinaProject (2007CB714704) supported by the National Basic Research Program of China
文摘The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and X-ray photoelectron spectroscopy.The results show that the friction logs are mixed fretting regime and gross slip regime with the magnitudes of displacement of 10 and 20 μm,respectively.Severe wear and friction oxidation occur on the material surface.A large number of granular debris produced in the fretting process can be easily congregated and adhered at the contact zone after repeated crushes.The resultant of friction oxidation is mainly composed of Fe3O4,Fe2O3,Cr2O3 and NiO.Temperature and friction are the major factors affecting the oxidation reaction rate.The fretting friction effect can enhance the oxidation reaction activity of surface atoms of 0Cr20Ni32AlTi alloy and reduce the oxidation activation energy.As result,the oxidation reaction rate is accelerated.
文摘In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction.
基金Project (51071078) supported by the National Natural Science Foundation of ChinaProject (AE201035) supported by the Research Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, China
文摘Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under the loads of 275 N at 25 °C, 150 N at 100 °C and 75 N at 200 °C, respectively. However, as the load is less than 50 N, the wear rate at 200 °C is lower than that at 25 °C or 100 °C. In mild wear regimes, the wear mechanisms can be classified into abrasive wear, oxidation wear and delamination wear. Delamination wear prevailed as the mild-to-severe wear transition starts to occur; the delamination occurs from the inside of matrix. Subsequently, plastic-extrusion wear as severe wear prevails accompanied with the transition. The thick and hard tribo-layer postpones the mild-to-severe wear transition due to restricting the occurrence of massive plastic deformation of worn surfaces.
基金Project(50975282)supported by the National Natural Science Foundation of China
文摘Oleic acid (denoted as OA) surface-caped lanthanum borate nanorods, abbreviated as OA/LaBO3·H2O, were prepared via hydrothermal method. The microstructures of the as-prepared OA/LaBO3·H2O nanorods were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The friction and wear properties of OA/LaBO3·H2O nanorods in rapeseed oil were evaluated with a four-ball tribo-tester. The results show that the as-prepared OA/LaBO3·H2O nanorods are hydrophobic and display nanorods morphology with uniform diameter of about 50 nm and length of up to 500 nm. In the meantime, OA/LaBO3·H2O nanorods can obviously improve the anti-wear and friction-reducing capacities of rapeseed oil, and the optimal anti-wear and friction-reducing properties of rapeseed oil were obtained at an OA/LaBO3·H2O content of 1% (mass fraction).
基金Project(DE-FG02-07ER46392) supported by U.S.Department of Energy,Office of Basic Energy ScienceProject(2011JQ002) supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘The tribological behavior of a Zr-based bulk metallic glass(BMG) was investigated using pin-on-disk sliding measurements in two different environments,i.e.,air and argon,against an yttria-stabilized zirconia counterface.It was found that the wear of the Zr-based BMG was reduced by more than 45% due to the removal of oxygen from the test environment at two different loads,i.e.,16 N and 23 N.The wear pins were examined using X-ray diffractometry,differential scanning calorimetry,scanning electron microscopy and optical surface profilometry.A number of abrasive particles and grooves presented on the worn surface of the pin tested in air,while a relatively smooth worn surface was observed in the specimens tested in argon.The wear mechanism of the pin worn in air was dominated by abrasive wear compared with an adhesive wear controlled process in the tests performed in argon.
文摘The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.
基金Projects(51071035,51274054,51375070)supported by the National Natural Science Foundation of ChinaProject(313011)supported by the Key Project of Ministry of Education of China
文摘Zn-Al-Cu-TiB2(ZA27-TiB2) in situ composites were fabricated via reactions between molten aluminum and mixed halide salts(K2TiF6 and KBF4) at temperature of 875 °C. The microstructure, mechanical properties and wear behavior of the composites were investigated. Microstructure analysis shows that fine and clean TiB2 particles distribute uniformly through the matrix. The mechanical properties of the composites increase with the increase in TiB2 content. As TiB2 content increases to 5%(mass fraction), an improvement of HB 18 in hardness and 49 MPa in ultimate tensile strength(UTS) is achieved. The overall results reveal that the composites possess low friction coefficients and the wear rate is reduced from 5.9×10-3 to 1.3×10-3 mm3/m after incorporating 5% TiB2. Friction coefficient and worn surface analysis indicate that there is a change in the wear mechanism in the initial stage of wear test after introducing in situ TiB2 particles into the matrix.