Zn-Al-Cu-TiB2(ZA27-TiB2) in situ composites were fabricated via reactions between molten aluminum and mixed halide salts(K2TiF6 and KBF4) at temperature of 875 °C. The microstructure, mechanical properties an...Zn-Al-Cu-TiB2(ZA27-TiB2) in situ composites were fabricated via reactions between molten aluminum and mixed halide salts(K2TiF6 and KBF4) at temperature of 875 °C. The microstructure, mechanical properties and wear behavior of the composites were investigated. Microstructure analysis shows that fine and clean TiB2 particles distribute uniformly through the matrix. The mechanical properties of the composites increase with the increase in TiB2 content. As TiB2 content increases to 5%(mass fraction), an improvement of HB 18 in hardness and 49 MPa in ultimate tensile strength(UTS) is achieved. The overall results reveal that the composites possess low friction coefficients and the wear rate is reduced from 5.9×10-3 to 1.3×10-3 mm3/m after incorporating 5% TiB2. Friction coefficient and worn surface analysis indicate that there is a change in the wear mechanism in the initial stage of wear test after introducing in situ TiB2 particles into the matrix.展开更多
The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microsc...The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microscopy(OM), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). The experimental results indicate that the alloy refined by Al-5Ti-B alloy exhibits equiaxed α(Al) dendrites and performs better wear resistance compared with the alloy without the grain refiner. Moreover, the addition of Mn can change the β-Al5 Fe Si phase to α-Al(Mn,Fe)Si phase and reduce the possibility of crack formation, thus improving the wear resistance. Sn added to A356 aluminum alloy forms Mg2 Sn precipitates after heat treatment. Therefore, the unrealizable precipitation hardening Mg2 Si phase and the softening β-Sn phase can reduce the hardness of the alloy, and finally reduce the wear resistance.展开更多
Cu nanoparticles surface-modified by dioctylamine dithiocarbamate (DTC8) were synthesized using a two-phase extraction route. The size, morphology and structure of resultant surface-capped Cu nanoparticles (coded a...Cu nanoparticles surface-modified by dioctylamine dithiocarbamate (DTC8) were synthesized using a two-phase extraction route. The size, morphology and structure of resultant surface-capped Cu nanoparticles (coded as DTC8-Cu) were analyzed by means of X-ray diffraction, transmission electron microscopy and infrared spectrometry. The tribological behavior of DTC8-Cu as an additive in liquid paraffin was evaluated with a four-ball machine, and the surface topography of the wear scar was also examined by means of scanning electron microscopy. Results show that Cu nanoparticles modified by DTC8 have a small particle size and a narrow size distribution. Besides, DTC8-Cu as an additive in liquid paraffin has excellent antiwear ability, due to the deposition of nano-Cu with low melting point on worn steel surface leading to the formation of a self-repairing protective layer thereon.展开更多
A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C...A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C/C composites were isolated and characterised by the size distribution and morphology. The evolvement of wear particles in the hip joint simulator was proposed. The results show that the wear particles from two kinds of C/C composites have a size ranging from submicron to tens of micrometers. The wear particles have various morphologies including broken fiber, fragment fiber, slice pyrolytic carbon and spherical pyrolytic carbon. C/C composites with needled carbon cloth preforms have larger size range and more broken fiber particles and slice pyrolytic carbon particles in comparison with C/C composites with carbon felt preforms. The evolvement of pyrolytic carbon particles is caused by surface regularization, whereas, the evolvement of carbon fiber particles is related to stress direction in the hip joint simulator.展开更多
Nanocrystalline nickel coating was prepared by flexible friction assisted electrodeposition technology in an additive-free Watts bath.The coating consists of massive equiaxial crystals with an average grain size of ab...Nanocrystalline nickel coating was prepared by flexible friction assisted electrodeposition technology in an additive-free Watts bath.The coating consists of massive equiaxial crystals with an average grain size of about 24 nm and exhibits a(111) preferred orientation.The differential scanning calorimetry(DSC) analysis of nanocrystalline nickel demonstrates that the peak temperature of rapid grain growth is about 285.4 °C,and the peak temperature of grain growth towards equilibrium is around 431.5 °C.The isochronous annealing results reveal that abnormal grain growth behavior is not observed in nanocrystalline nickel without sulfur-containing.The thermal stability of the deposition was improved due to its initial microstructure of the as-deposited nickel and a certain amount of annealing nano-twins with low-energy,which reduces the driving force for grain growth.Consequently,the coating shows a low residual tensile stress of about 50 MPa and a high microhardness of HV 400 at the annealing temperature of 450 °C.展开更多
In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and Ti...In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.展开更多
The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in ...The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in static air were investigated. The comparison was made with the coating without nano-particles. The results show that the wear mechanism of the NiCoCrAlY coatings with nano-particles, like the coating without nano-particles, is the delamination wear due to the strong plastic deformation and oxidative wear. However, the frictional coefficient of the coatings increases and presents the decrease trend with the increase of sliding distance after adding nano-particles. Moreover, the wear rate of the coatings with nano-particles is only 34.0%-64.5% of the coating without nano-particles. Among the three nano-particles, the improvement of nano-SiC on the high temperature wear resistance of the coating is the most significant.展开更多
The friction and wear behavior of magnesium matrix composites reinforced with particulate Mg2Si was characterized. The influence of Si, applied load and sliding rate on the wear behavior of Mg2Si/AM60 magnesium matrix...The friction and wear behavior of magnesium matrix composites reinforced with particulate Mg2Si was characterized. The influence of Si, applied load and sliding rate on the wear behavior of Mg2Si/AM60 magnesium matrix composites was studied. The results indicate that the particulate Mg2Si can be synthesized by adding Si into magnesium alloy. The wear properties of AM60 magnesium alloy are significantly improved with MgzSi particles. The wear mass losses of AM60 magnesium alloy and MgaSi/AM60 magnesium matrix composites decrease with increase in applied load and sliding rate. The wear feature of the AM60 magnesium alloy is adhesion wear. The wear mechanism of Mg2Si/AM60 magnesium matrix composites transforms from abrasive wear to adhesion wear with the increase of load.展开更多
TiC nanoparticles reinforced 2219 aluminum matrix composites were successfully prepared by ultrasonic casting, followed by forging and T6 heat treatment. The friction and wear properties of the disc-to-column were stu...TiC nanoparticles reinforced 2219 aluminum matrix composites were successfully prepared by ultrasonic casting, followed by forging and T6 heat treatment. The friction and wear properties of the disc-to-column were studied under four separate normal values of 5, 10, 20 and 30 N. The increasing hardness value of the nanocomposite may be attributed to the large amount of TiC(i.e., 1.3 wt.% and 1.7 wt.%) introduced to the composites. The friction coefficient of the nanocomposite decreased with the increase of TiC nanoparticles(0-1.7 wt.%) under the same load. But the wear resistance of the TiC/AA2219 nanocomposite increased by 30%-90% as compared to the 2219 matrix alloy. And it decreased with the increasing load. The composite with 0.9 wt.% TiC produced the best results in terms of friction and wear because of its relatively higher hardness and perfect ability to retain a transfer layer of a comparatively larger thickness. On the wear surface, some Al2O3particles were found which aided in the development of protective shear regions and improved the wear resistance. The wear mechanism for the TiC/AA2219 nanocomposite was a combination of adhesive and oxidative wear, with the composites containing hard TiC nanoparticles being mainly abrasive.展开更多
In order to reveal the force transmission features of the granules in the solid granule medium forming(SGMF) technology,the frictional characteristics of the non-metallic granule medium(NGM) under high pressure were i...In order to reveal the force transmission features of the granules in the solid granule medium forming(SGMF) technology,the frictional characteristics of the non-metallic granule medium(NGM) under high pressure were investigated by tests and simulations.And the relevant changing curves of the internal friction coefficient of the granular system under different normal pressures were obtained by self-designed shear test.By the granule volume compression test,the accurate discrete element simulation parameters were obtained,based on this,the discrete element method(DEM) was adopted to reveal the evolution law of the NGM granules movement in the sample shear process from the microscopic view.Based on the DEM,the influence of granule diameter,surface friction coefficient,normal pressure and shear velocity on the internal friction coefficient of the granular system were studied.And the parameters were conducted to be dimensionless by introducing the inertia coefficient.Finally,the expression showing power-law relationship of inertia coefficient,surface friction coefficient and internal friction coefficient is obtained.展开更多
Three-pass friction stir processing(FSP)with different moving distances of the stirring tool between the two successivepasses,50%diameter of the pin(traditional way)and50%diameter of the shoulder(novel way),was conduc...Three-pass friction stir processing(FSP)with different moving distances of the stirring tool between the two successivepasses,50%diameter of the pin(traditional way)and50%diameter of the shoulder(novel way),was conducted on7B04-O Al alloy.The result shows that an improvement in the mechanical properties of the processed zone is accomplished due to grain and secondphase particles refinement.The hardness of the multi-pass FSP(M-FSP)sample is about HV40higher than that of the base metal.And the tensile strength of the M-FSP specimens is also significantly increased to about1.4times that of the base metal.Besides,theweak region of the processed zone is mainly dependent on the moving distance,where it is the previous pass stir zone in thetraditional way and the transitional zone in the novel way.Increasing the rotational speed narrows the weak region in the novel way,while it does not in the traditional way.展开更多
The couette dusty flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the dusty fluid at the stationary plate and its corresponding removal by constant suction through the p...The couette dusty flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the dusty fluid at the stationary plate and its corresponding removal by constant suction through the plate in uniform motion was analyzed. Due to this type of injection velocity the dusty flow becomes 3D. Perturbation method is used to obtain the expressions for the velocity and temperature fields of both the fluid and dust. It was found that the velocity profiles of both the fluid and dust in the main flow direction decrease with the increase of the mass concentration of the dust particles, and those in cross flow direction increase with an increase in the mass concentration of the dust particles up to the middle of the channel and thereafter decrease with increase in mass concentration of the dust particles. The skin friction components Tx and Tz in the main flow and transverse directions respectively increase with an increase in the mass concentration of the dust particles (or) injection parameter. The heat transfer coefficient decreases with the increase of the injection parameter and increases with the increase in the mass concentration of the dust particles.展开更多
ZnO nanoparticles with an average size of 125 nm were prepared via homogeneous precipitation method and were characterized by SEM.The products were surface-modified by the surfactant SDS.Surface-modified nano particle...ZnO nanoparticles with an average size of 125 nm were prepared via homogeneous precipitation method and were characterized by SEM.The products were surface-modified by the surfactant SDS.Surface-modified nano particles were added at a mass ratio of 1.0%,2.0%,3.0%,and 4.0%,respectively,in base oil and their friction and wear behaviors were evaluated on a MRS-10D type four-ball wear tester.After four-ball wear tests,the morphology of the rubbing surfaces was evaluated with metallographic microscope.It was revealed that the modified nano ZnO had excellent behavior for improving anti-wear property and friction coefficient,which could greatly reduce the friction of machine parts.展开更多
Debris flows include a great diversity of grain sizes with inherent features such as inverse grading, particle size segregation, and liquefaction of fine sediment. The liquefaction of fine sediment affects the fluidit...Debris flows include a great diversity of grain sizes with inherent features such as inverse grading, particle size segregation, and liquefaction of fine sediment. The liquefaction of fine sediment affects the fluidity of debris flows, although the behavior and influence of fine sediment in debris flows have not been examined sufficiently. This study used flume tests to detect the effect of fine sediment on the fluidity of laboratory debris flows consisting of particles with various diameters. From the experiments, the greatest sediment concentration and flow depth were observed in the debris flows mixed with fine sediment indicating increased flow resistance. The experimental friction coefficient was then compared with the theoretical friction coefficient derived by substituting the experimental values into the constitutive equations for debris flow. The theoretical friction coefficient was obtained from two models with different fine-sediment treatments: assuming that all of the fine sediments were solid particles or that the particles consisted of a fluid phase involving pore water liquefaction. From the comparison of the friction coefficients, a fully liquefaction state was detected for the fine particle mixture. When the mixing ratio and particle size of the fine sediment were different, some other eases were considered to be in a partially liquefied transition state. These results imply that the liquefaction of fine sediment in debris flows was induced not only by the geometric conditions such as particle sizes, but also by the flow conditions.展开更多
A two-dimensional cellular automaton(CA)model was utilized to analyze the effect of mechanical vibration on microstructure evolution of AZ91 alloy during friction stir welding(FSW).The simulated results,namely grain t...A two-dimensional cellular automaton(CA)model was utilized to analyze the effect of mechanical vibration on microstructure evolution of AZ91 alloy during friction stir welding(FSW).The simulated results,namely grain topology,grain size distribution,average grain size,and also the dynamic recrystallization(DRX)fraction were compared with measured data.The adequate comparability between FEM and experimental data shows that the CA method can be applied to the analysis of the microstructure progression during the friction stir welding of AZ91 alloy.It is concluded that the dislocation density during the friction stir vibration welding(FSVW)is higher than that in the FSW process and the process of nucleation and grain growth is faster for samples during FSVW compared to FSW.The grain size modification and DRX phenomenon with various vibration frequencies were also simulated in detail during FSVW.It is found that vibration makes nucleation start earlier and decreases the proportion of the incubation period and the percentage of recrystallization as vibration frequency improves.展开更多
The studied area is located in the northwestern Morocco. It occupies a 2.5 km long of coastline on the Atlantic shore. It is oriented NNE-SSW, clearly exposed to the dominant swells coming from west to northwest. The ...The studied area is located in the northwestern Morocco. It occupies a 2.5 km long of coastline on the Atlantic shore. It is oriented NNE-SSW, clearly exposed to the dominant swells coming from west to northwest. The aim of this study is to determine the capacity of the waves that hit the shore to transport the sediments. To achieve our goal we chose a methodology that combines field sampling and laboratory analysis with digital modeling. In the first phase we sampled sediments from the study area along and across the beach line, dry sieving was used to determine the grain size distribution and the statistics derived from the sand samples were used to determine the critical shield stress (z'cr, b) also to investigate the spatial variability and influence of transport on grain size characteristics. As for the second phase, we intended to create a wave climate modeling based on nautical chart, using ArcGIS then Matlab that allowed us to obtain the Swan model for the area. The correlation between those results showed the degree of contribution of wave in the distribution of sediments along the shore.展开更多
AZ91Mg alloy was considered and friction stir processing(FSP)was adopted to achieve grain refinement to investigatethe effect of grain size and secondary phase on machining characteristics during drilling at various s...AZ91Mg alloy was considered and friction stir processing(FSP)was adopted to achieve grain refinement to investigatethe effect of grain size and secondary phase on machining characteristics during drilling at various speeds and feeds.Super saturatedAZ91Mg alloy was obtained after FSP and the grain refinement was achieved from(166.5±8.7)μm to(21.7±13.5)μm.Surprisingly,hardness reduced for FSP AZ91Mg alloy(88.95±6.1)compared with AZ91alloy(108.2±15.6),which was attributed to the reducedsecondary phase.However,the mean cutting force for FSP-treated(FSPed)AZ91Mg alloy was marginally increased.The edgedamage of the drilled holes was lower for FSPed AZ91Mg alloy compared with unprocessed AZ91Mg alloy.Hence,it can beunderstood that the grain refinement may slightly increase the cutting forces during drilling but better edge finishing can be achievedin machining of AZ91Mg alloy.展开更多
Friction stir extrusion(FSE)is known as an innovative manufacturing technology that makes it possible to directly produce wire via consolidation and extrusion of metal chips or solid billets.In this study,wire samples...Friction stir extrusion(FSE)is known as an innovative manufacturing technology that makes it possible to directly produce wire via consolidation and extrusion of metal chips or solid billets.In this study,wire samples were produced using aluminum alloy AA7022 machining chips by the use of the FSE.To this end,the microstructures and mechanical properties of the base material(BM)and the extruded samples were investigated.The corrosion resistance of the given samples was also determined using potentiodynamic polarization technique.The results showed that the samples manufactured at higher rotational speeds possessed good surface quality,the process temperature and the grain size similarly increased following the rise in rotational speed,and the mechanical properties consequently decreased.Using the FSE led to crystallite refinement,increase in volume fraction of grain boundaries,as well as re-distribution of precipitates affecting corrosion resistance.Furthermore,the findings of the corrosion tests revealed that the produced samples by the FSE had adequate corrosion resistance and the growth in die rotation rate augmented current density and subsequently reduced corrosion resistance.展开更多
An improved method of friction stir processing(FSP)was introduced for the processing of AZ91 magnesium alloy specimens.This novel process was called“friction stir vibration processing(FSVP)”.FSP and FSVP were utiliz...An improved method of friction stir processing(FSP)was introduced for the processing of AZ91 magnesium alloy specimens.This novel process was called“friction stir vibration processing(FSVP)”.FSP and FSVP were utilized to develop surface composites on the studied alloy while SiC nanoparticles were applied as second-phase particles.The effect of reinforcing SiC particles with different sizes(30 and 300 nm)on different characteristics of the composite surface was studied.The results indicated that the microstructure was refined and mechanical properties such as hardness,ductility,and strength were enhanced as FSVP was applied.Furthermore,it was concluded that the effect of reinforcing particles with a size of 30 nm on the microstructure and mechanical properties of the surface composite was more obvious than that of particles with a size of 300 nm.It was also found that mechanical properties and microstructure of FSV-processed specimens were improved as vibration frequency increased.The hardness value in the stir zone was about 157 MPa for the FSV-processed specimen at a vibration frequency of 50 Hz,while this value was around 116 MPa for the FSV-processed specimen at a vibration frequency of 25 Hz.展开更多
基金Projects(51071035,51274054,51375070)supported by the National Natural Science Foundation of ChinaProject(313011)supported by the Key Project of Ministry of Education of China
文摘Zn-Al-Cu-TiB2(ZA27-TiB2) in situ composites were fabricated via reactions between molten aluminum and mixed halide salts(K2TiF6 and KBF4) at temperature of 875 °C. The microstructure, mechanical properties and wear behavior of the composites were investigated. Microstructure analysis shows that fine and clean TiB2 particles distribute uniformly through the matrix. The mechanical properties of the composites increase with the increase in TiB2 content. As TiB2 content increases to 5%(mass fraction), an improvement of HB 18 in hardness and 49 MPa in ultimate tensile strength(UTS) is achieved. The overall results reveal that the composites possess low friction coefficients and the wear rate is reduced from 5.9×10-3 to 1.3×10-3 mm3/m after incorporating 5% TiB2. Friction coefficient and worn surface analysis indicate that there is a change in the wear mechanism in the initial stage of wear test after introducing in situ TiB2 particles into the matrix.
文摘The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microscopy(OM), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). The experimental results indicate that the alloy refined by Al-5Ti-B alloy exhibits equiaxed α(Al) dendrites and performs better wear resistance compared with the alloy without the grain refiner. Moreover, the addition of Mn can change the β-Al5 Fe Si phase to α-Al(Mn,Fe)Si phase and reduce the possibility of crack formation, thus improving the wear resistance. Sn added to A356 aluminum alloy forms Mg2 Sn precipitates after heat treatment. Therefore, the unrealizable precipitation hardening Mg2 Si phase and the softening β-Sn phase can reduce the hardness of the alloy, and finally reduce the wear resistance.
基金Project (2007CB607606) supported by the Ministry of Science and Technology of ChinaProject (50975077) supported by the National Natural Science Foundation of China
文摘Cu nanoparticles surface-modified by dioctylamine dithiocarbamate (DTC8) were synthesized using a two-phase extraction route. The size, morphology and structure of resultant surface-capped Cu nanoparticles (coded as DTC8-Cu) were analyzed by means of X-ray diffraction, transmission electron microscopy and infrared spectrometry. The tribological behavior of DTC8-Cu as an additive in liquid paraffin was evaluated with a four-ball machine, and the surface topography of the wear scar was also examined by means of scanning electron microscopy. Results show that Cu nanoparticles modified by DTC8 have a small particle size and a narrow size distribution. Besides, DTC8-Cu as an additive in liquid paraffin has excellent antiwear ability, due to the deposition of nano-Cu with low melting point on worn steel surface leading to the formation of a self-repairing protective layer thereon.
基金Projects (50832004, 51202194) supported by National Natural Science Foundation of ChinaProject (11-BZ-2012) supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China+1 种基金Project (T201107) supported by Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, ChinaProject (B08040) supported by 111 Project of China
文摘A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C/C composites were isolated and characterised by the size distribution and morphology. The evolvement of wear particles in the hip joint simulator was proposed. The results show that the wear particles from two kinds of C/C composites have a size ranging from submicron to tens of micrometers. The wear particles have various morphologies including broken fiber, fragment fiber, slice pyrolytic carbon and spherical pyrolytic carbon. C/C composites with needled carbon cloth preforms have larger size range and more broken fiber particles and slice pyrolytic carbon particles in comparison with C/C composites with carbon felt preforms. The evolvement of pyrolytic carbon particles is caused by surface regularization, whereas, the evolvement of carbon fiber particles is related to stress direction in the hip joint simulator.
基金Project(51005244)supported by the National Natural Science Foundation of ChinaProject(2011CB013405)supported by the Basic Research Development Program of China
文摘Nanocrystalline nickel coating was prepared by flexible friction assisted electrodeposition technology in an additive-free Watts bath.The coating consists of massive equiaxial crystals with an average grain size of about 24 nm and exhibits a(111) preferred orientation.The differential scanning calorimetry(DSC) analysis of nanocrystalline nickel demonstrates that the peak temperature of rapid grain growth is about 285.4 °C,and the peak temperature of grain growth towards equilibrium is around 431.5 °C.The isochronous annealing results reveal that abnormal grain growth behavior is not observed in nanocrystalline nickel without sulfur-containing.The thermal stability of the deposition was improved due to its initial microstructure of the as-deposited nickel and a certain amount of annealing nano-twins with low-energy,which reduces the driving force for grain growth.Consequently,the coating shows a low residual tensile stress of about 50 MPa and a high microhardness of HV 400 at the annealing temperature of 450 °C.
基金Supported by the Shanghai Municipal Education Commission(06FZ008)Shanghai Municipal Education Commission Key Disciplines(J50603)
文摘In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.
基金Project(20060287019)supported by the Research Fund for Doctoral Program of Higher Education of ChinaProject(kjsmcx07001)supported by the Opening Research Fund of Jiangsu Key Laboratory of Tribology,ChinaProject(BK2010267)supported by the Jiangsu Provincial Natural Science Foundation of Jiangsu Province,China
文摘The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in static air were investigated. The comparison was made with the coating without nano-particles. The results show that the wear mechanism of the NiCoCrAlY coatings with nano-particles, like the coating without nano-particles, is the delamination wear due to the strong plastic deformation and oxidative wear. However, the frictional coefficient of the coatings increases and presents the decrease trend with the increase of sliding distance after adding nano-particles. Moreover, the wear rate of the coatings with nano-particles is only 34.0%-64.5% of the coating without nano-particles. Among the three nano-particles, the improvement of nano-SiC on the high temperature wear resistance of the coating is the most significant.
基金Project supported by the Key Laboratory of Ministry of Education for Conveyance and Equipment (East China Jiaotong University), ChinaProject (GJJ11094) supported by Science Funds of Jiangxi Provincial Education Project on Department, China
文摘The friction and wear behavior of magnesium matrix composites reinforced with particulate Mg2Si was characterized. The influence of Si, applied load and sliding rate on the wear behavior of Mg2Si/AM60 magnesium matrix composites was studied. The results indicate that the particulate Mg2Si can be synthesized by adding Si into magnesium alloy. The wear properties of AM60 magnesium alloy are significantly improved with MgzSi particles. The wear mass losses of AM60 magnesium alloy and MgaSi/AM60 magnesium matrix composites decrease with increase in applied load and sliding rate. The wear feature of the AM60 magnesium alloy is adhesion wear. The wear mechanism of Mg2Si/AM60 magnesium matrix composites transforms from abrasive wear to adhesion wear with the increase of load.
基金Project(2020RC2002) supported by Science and Technology Innovation Program of Hunan Province,ChinaProject(2021JJ40774) supported by Natural Science Foundation of Hunan Province,China+2 种基金Project(20A430007) supported by Key Scientific Research Projects of Colleges and Universities in Henan Province,ChinaProject(212102210032)supported by the Key Scientific and Technological Projects in Henan Province,ChinaProject(HEU10202117)supported by the Key Laboratory of Superlight Materials Surface Technology,Ministry of Education,China。
文摘TiC nanoparticles reinforced 2219 aluminum matrix composites were successfully prepared by ultrasonic casting, followed by forging and T6 heat treatment. The friction and wear properties of the disc-to-column were studied under four separate normal values of 5, 10, 20 and 30 N. The increasing hardness value of the nanocomposite may be attributed to the large amount of TiC(i.e., 1.3 wt.% and 1.7 wt.%) introduced to the composites. The friction coefficient of the nanocomposite decreased with the increase of TiC nanoparticles(0-1.7 wt.%) under the same load. But the wear resistance of the TiC/AA2219 nanocomposite increased by 30%-90% as compared to the 2219 matrix alloy. And it decreased with the increasing load. The composite with 0.9 wt.% TiC produced the best results in terms of friction and wear because of its relatively higher hardness and perfect ability to retain a transfer layer of a comparatively larger thickness. On the wear surface, some Al2O3particles were found which aided in the development of protective shear regions and improved the wear resistance. The wear mechanism for the TiC/AA2219 nanocomposite was a combination of adhesive and oxidative wear, with the composites containing hard TiC nanoparticles being mainly abrasive.
基金Projects(51305385,51305386)supported by the National Natural Science Foundation of ChinaProject(QN20131080)supported by the Science Research Youth Foundation of Hebei Provincial Colleges and Universities,China
文摘In order to reveal the force transmission features of the granules in the solid granule medium forming(SGMF) technology,the frictional characteristics of the non-metallic granule medium(NGM) under high pressure were investigated by tests and simulations.And the relevant changing curves of the internal friction coefficient of the granular system under different normal pressures were obtained by self-designed shear test.By the granule volume compression test,the accurate discrete element simulation parameters were obtained,based on this,the discrete element method(DEM) was adopted to reveal the evolution law of the NGM granules movement in the sample shear process from the microscopic view.Based on the DEM,the influence of granule diameter,surface friction coefficient,normal pressure and shear velocity on the internal friction coefficient of the granular system were studied.And the parameters were conducted to be dimensionless by introducing the inertia coefficient.Finally,the expression showing power-law relationship of inertia coefficient,surface friction coefficient and internal friction coefficient is obtained.
基金support received from the Ministry of Education and Science,Russia,(Belgorod State University project No.1533)is acknowledgedsupport from the National Science Foundation for Young Scientists of China(No.51501035)+1 种基金Chinese Postdoctoral Science Foundation(No.2016T90227)supported financially by the National Natural Science Foundation of China(No.51334006)
文摘Three-pass friction stir processing(FSP)with different moving distances of the stirring tool between the two successivepasses,50%diameter of the pin(traditional way)and50%diameter of the shoulder(novel way),was conducted on7B04-O Al alloy.The result shows that an improvement in the mechanical properties of the processed zone is accomplished due to grain and secondphase particles refinement.The hardness of the multi-pass FSP(M-FSP)sample is about HV40higher than that of the base metal.And the tensile strength of the M-FSP specimens is also significantly increased to about1.4times that of the base metal.Besides,theweak region of the processed zone is mainly dependent on the moving distance,where it is the previous pass stir zone in thetraditional way and the transitional zone in the novel way.Increasing the rotational speed narrows the weak region in the novel way,while it does not in the traditional way.
文摘The couette dusty flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the dusty fluid at the stationary plate and its corresponding removal by constant suction through the plate in uniform motion was analyzed. Due to this type of injection velocity the dusty flow becomes 3D. Perturbation method is used to obtain the expressions for the velocity and temperature fields of both the fluid and dust. It was found that the velocity profiles of both the fluid and dust in the main flow direction decrease with the increase of the mass concentration of the dust particles, and those in cross flow direction increase with an increase in the mass concentration of the dust particles up to the middle of the channel and thereafter decrease with increase in mass concentration of the dust particles. The skin friction components Tx and Tz in the main flow and transverse directions respectively increase with an increase in the mass concentration of the dust particles (or) injection parameter. The heat transfer coefficient decreases with the increase of the injection parameter and increases with the increase in the mass concentration of the dust particles.
基金supported by Liaoning Provincial Office of Education for Innovation Team (Project number:2006T001)Liaoning Province of Key Laboratory Project (Project number:2008403001)
文摘ZnO nanoparticles with an average size of 125 nm were prepared via homogeneous precipitation method and were characterized by SEM.The products were surface-modified by the surfactant SDS.Surface-modified nano particles were added at a mass ratio of 1.0%,2.0%,3.0%,and 4.0%,respectively,in base oil and their friction and wear behaviors were evaluated on a MRS-10D type four-ball wear tester.After four-ball wear tests,the morphology of the rubbing surfaces was evaluated with metallographic microscope.It was revealed that the modified nano ZnO had excellent behavior for improving anti-wear property and friction coefficient,which could greatly reduce the friction of machine parts.
基金supported by Grant-in-Aid for Scientific Research (Grant No.22780140,2010),from the Ministry of Education,Science,Sports,and Culture,of Japan
文摘Debris flows include a great diversity of grain sizes with inherent features such as inverse grading, particle size segregation, and liquefaction of fine sediment. The liquefaction of fine sediment affects the fluidity of debris flows, although the behavior and influence of fine sediment in debris flows have not been examined sufficiently. This study used flume tests to detect the effect of fine sediment on the fluidity of laboratory debris flows consisting of particles with various diameters. From the experiments, the greatest sediment concentration and flow depth were observed in the debris flows mixed with fine sediment indicating increased flow resistance. The experimental friction coefficient was then compared with the theoretical friction coefficient derived by substituting the experimental values into the constitutive equations for debris flow. The theoretical friction coefficient was obtained from two models with different fine-sediment treatments: assuming that all of the fine sediments were solid particles or that the particles consisted of a fluid phase involving pore water liquefaction. From the comparison of the friction coefficients, a fully liquefaction state was detected for the fine particle mixture. When the mixing ratio and particle size of the fine sediment were different, some other eases were considered to be in a partially liquefied transition state. These results imply that the liquefaction of fine sediment in debris flows was induced not only by the geometric conditions such as particle sizes, but also by the flow conditions.
文摘A two-dimensional cellular automaton(CA)model was utilized to analyze the effect of mechanical vibration on microstructure evolution of AZ91 alloy during friction stir welding(FSW).The simulated results,namely grain topology,grain size distribution,average grain size,and also the dynamic recrystallization(DRX)fraction were compared with measured data.The adequate comparability between FEM and experimental data shows that the CA method can be applied to the analysis of the microstructure progression during the friction stir welding of AZ91 alloy.It is concluded that the dislocation density during the friction stir vibration welding(FSVW)is higher than that in the FSW process and the process of nucleation and grain growth is faster for samples during FSVW compared to FSW.The grain size modification and DRX phenomenon with various vibration frequencies were also simulated in detail during FSVW.It is found that vibration makes nucleation start earlier and decreases the proportion of the incubation period and the percentage of recrystallization as vibration frequency improves.
文摘The studied area is located in the northwestern Morocco. It occupies a 2.5 km long of coastline on the Atlantic shore. It is oriented NNE-SSW, clearly exposed to the dominant swells coming from west to northwest. The aim of this study is to determine the capacity of the waves that hit the shore to transport the sediments. To achieve our goal we chose a methodology that combines field sampling and laboratory analysis with digital modeling. In the first phase we sampled sediments from the study area along and across the beach line, dry sieving was used to determine the grain size distribution and the statistics derived from the sand samples were used to determine the critical shield stress (z'cr, b) also to investigate the spatial variability and influence of transport on grain size characteristics. As for the second phase, we intended to create a wave climate modeling based on nautical chart, using ArcGIS then Matlab that allowed us to obtain the Swan model for the area. The correlation between those results showed the degree of contribution of wave in the distribution of sediments along the shore.
文摘AZ91Mg alloy was considered and friction stir processing(FSP)was adopted to achieve grain refinement to investigatethe effect of grain size and secondary phase on machining characteristics during drilling at various speeds and feeds.Super saturatedAZ91Mg alloy was obtained after FSP and the grain refinement was achieved from(166.5±8.7)μm to(21.7±13.5)μm.Surprisingly,hardness reduced for FSP AZ91Mg alloy(88.95±6.1)compared with AZ91alloy(108.2±15.6),which was attributed to the reducedsecondary phase.However,the mean cutting force for FSP-treated(FSPed)AZ91Mg alloy was marginally increased.The edgedamage of the drilled holes was lower for FSPed AZ91Mg alloy compared with unprocessed AZ91Mg alloy.Hence,it can beunderstood that the grain refinement may slightly increase the cutting forces during drilling but better edge finishing can be achievedin machining of AZ91Mg alloy.
文摘Friction stir extrusion(FSE)is known as an innovative manufacturing technology that makes it possible to directly produce wire via consolidation and extrusion of metal chips or solid billets.In this study,wire samples were produced using aluminum alloy AA7022 machining chips by the use of the FSE.To this end,the microstructures and mechanical properties of the base material(BM)and the extruded samples were investigated.The corrosion resistance of the given samples was also determined using potentiodynamic polarization technique.The results showed that the samples manufactured at higher rotational speeds possessed good surface quality,the process temperature and the grain size similarly increased following the rise in rotational speed,and the mechanical properties consequently decreased.Using the FSE led to crystallite refinement,increase in volume fraction of grain boundaries,as well as re-distribution of precipitates affecting corrosion resistance.Furthermore,the findings of the corrosion tests revealed that the produced samples by the FSE had adequate corrosion resistance and the growth in die rotation rate augmented current density and subsequently reduced corrosion resistance.
基金Amirkabir University of Technology(AUT)Sharif University of TechnologyNational Elites Foundation of Iran for their support during this research.
文摘An improved method of friction stir processing(FSP)was introduced for the processing of AZ91 magnesium alloy specimens.This novel process was called“friction stir vibration processing(FSVP)”.FSP and FSVP were utilized to develop surface composites on the studied alloy while SiC nanoparticles were applied as second-phase particles.The effect of reinforcing SiC particles with different sizes(30 and 300 nm)on different characteristics of the composite surface was studied.The results indicated that the microstructure was refined and mechanical properties such as hardness,ductility,and strength were enhanced as FSVP was applied.Furthermore,it was concluded that the effect of reinforcing particles with a size of 30 nm on the microstructure and mechanical properties of the surface composite was more obvious than that of particles with a size of 300 nm.It was also found that mechanical properties and microstructure of FSV-processed specimens were improved as vibration frequency increased.The hardness value in the stir zone was about 157 MPa for the FSV-processed specimen at a vibration frequency of 50 Hz,while this value was around 116 MPa for the FSV-processed specimen at a vibration frequency of 25 Hz.