The controllable key factors in magnetorheological finishing device were studied to determine their influence on efficiency of magnetorheological finishing(MRF)and surface of MRF,as well as interaction between efficie...The controllable key factors in magnetorheological finishing device were studied to determine their influence on efficiency of magnetorheological finishing(MRF)and surface of MRF,as well as interaction between efficiency and surface.Based on theoretical and experimental research,the law of material removal was explored and a new process variable based material removal model(PVMR)was proposed.The experimental findings demonstrate that PVMR reveals the law of the material removal with introduction of three concepts and makes a material removal function z(y i)where the magnetorheological finishing process parameters are considered since they are easy to control and adjust.So the material function of this model is quadratic curve function which is readily suitable for stability and online control magnetorheological finishing.展开更多
基金National Science and Technology Major Project,China(No.2009ZX04001-101)National Program on Key Basic Research Project(973Program)(No.2009CB724400)Shanghai Leading Academic Discipline Project,China(No.B602)
文摘The controllable key factors in magnetorheological finishing device were studied to determine their influence on efficiency of magnetorheological finishing(MRF)and surface of MRF,as well as interaction between efficiency and surface.Based on theoretical and experimental research,the law of material removal was explored and a new process variable based material removal model(PVMR)was proposed.The experimental findings demonstrate that PVMR reveals the law of the material removal with introduction of three concepts and makes a material removal function z(y i)where the magnetorheological finishing process parameters are considered since they are easy to control and adjust.So the material function of this model is quadratic curve function which is readily suitable for stability and online control magnetorheological finishing.