A direct conversion CMOS DVB-S front-end employs a T-configuration variable attenuator,a single-to- differential low noise amplifier, and a low noise mixer. By innovative use of the attenuator, the linearity handling ...A direct conversion CMOS DVB-S front-end employs a T-configuration variable attenuator,a single-to- differential low noise amplifier, and a low noise mixer. By innovative use of the attenuator, the linearity handling ability of the system is dramatically improved. The system is designed and fabricated in SMIC 0.18 μm RF CMOS technology. The measurement data show that the front-end provides a total of more than 30rib dynamic range and a noise figure of 5dB in the wide frequency signal band. The prototype front-end consumes only 10mA and achieves an IIP3 of + 20dBm.展开更多
In Peer-to-Peer(P2P) streaming systems,video data may be lost since peers can join and leave the overlay network randomly,thereby deteriorating the video playback quality.In this paper we propose a new hybrid mesh and...In Peer-to-Peer(P2P) streaming systems,video data may be lost since peers can join and leave the overlay network randomly,thereby deteriorating the video playback quality.In this paper we propose a new hybrid mesh and Distributed Hash Table(DHT) based P2P streaming system,called HQMedia,to provide high playback quality to users by maintaining high data dissemination resilience with a low overhead.In HQMedia,peers are classified into Super Peers(SP) and Common Peers(CP) according to their online time.SPs and CPs form a mesh structure,while SPs alone form a new Streaming DHT(SDHT) structure.In this hybrid architecture,we propose a joint scheduling and compensation mechanism.If any frames cannot be obtained during the scheduling phase,an SDHT-based compensation mechanism is invoked for retrieving the missing frames near the playback point.We evaluate the performance of HQMedia by both theoretical analysis and intensive simulation experiments on large-scale networks to demonstrate the effectiveness and scalability of the proposed system.Numerical results show that HQMedia significantly outperforms existing mesh-based and treebased P2P live streaming systems by improving playback quality with only less than 1% extra maintenance overhead.展开更多
In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retra...In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).展开更多
文摘A direct conversion CMOS DVB-S front-end employs a T-configuration variable attenuator,a single-to- differential low noise amplifier, and a low noise mixer. By innovative use of the attenuator, the linearity handling ability of the system is dramatically improved. The system is designed and fabricated in SMIC 0.18 μm RF CMOS technology. The measurement data show that the front-end provides a total of more than 30rib dynamic range and a noise figure of 5dB in the wide frequency signal band. The prototype front-end consumes only 10mA and achieves an IIP3 of + 20dBm.
基金supported by the National Programs for Science and Technology under Grant No. 2009ZX03004-002the National Natural Science Foundation of China Major Project under Grant No. 60833002+2 种基金the National Natural Science Foundation of China under Grant No.60772142the National Science and Technology Major Projects under Grant No. 2008ZX03003-005the Science and Technology Research Project of Chongqing Education Commission under Grant No. KJ120825
文摘In Peer-to-Peer(P2P) streaming systems,video data may be lost since peers can join and leave the overlay network randomly,thereby deteriorating the video playback quality.In this paper we propose a new hybrid mesh and Distributed Hash Table(DHT) based P2P streaming system,called HQMedia,to provide high playback quality to users by maintaining high data dissemination resilience with a low overhead.In HQMedia,peers are classified into Super Peers(SP) and Common Peers(CP) according to their online time.SPs and CPs form a mesh structure,while SPs alone form a new Streaming DHT(SDHT) structure.In this hybrid architecture,we propose a joint scheduling and compensation mechanism.If any frames cannot be obtained during the scheduling phase,an SDHT-based compensation mechanism is invoked for retrieving the missing frames near the playback point.We evaluate the performance of HQMedia by both theoretical analysis and intensive simulation experiments on large-scale networks to demonstrate the effectiveness and scalability of the proposed system.Numerical results show that HQMedia significantly outperforms existing mesh-based and treebased P2P live streaming systems by improving playback quality with only less than 1% extra maintenance overhead.
基金supported in part by the National Natural Science Foundation of China under Grant No. 61032004the National High Technical Research and Development Program of China (863 Program) under Grants No. 2012AA121605,No. 2012AA01A503,No.2012AA01A510
文摘In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).