In recent years, numerous exploration activities of oil and gas industry have been conducted in ultra deep water. The global offshore industry is building systems today for drilling in even deeper water, progressively...In recent years, numerous exploration activities of oil and gas industry have been conducted in ultra deep water. The global offshore industry is building systems today for drilling in even deeper water, progressively using new technologies, and significantly extending existing technologies. This is the general trend in the offshore oil and gas industry. So the technology of ultra-deepwater risers, which is the main tool in drilling oil, is more and more standard. This paper manly focuses on the global analysis of the drilling risers. And it is divided into two parts, operability analysis and hang-off analysis that are used to check the design of the riser. In this paper, the rotation angle and stress of the riser in the drilling mode are calculated to determine the operability envelop. The number of the buoyancy modules has been determined and according to the API standard, all the worked out values have been checked out. From all the above, it is concluded that the operability envelop is relatively small under harsh condition and the number of the buoyancy modules is a little large. And above all, the design of this riser is successful.展开更多
A discrete-event system simulation and animation program was developed to enhance the efficiency of a truck-excavator operation and reduce the environmental impact of haulage in an open-cut coal mine with multiple-pit...A discrete-event system simulation and animation program was developed to enhance the efficiency of a truck-excavator operation and reduce the environmental impact of haulage in an open-cut coal mine with multiple-pit operations. In any mine, a key objective is to have sufficient equipment for production and not to have excess to where it becomes counterproductive. Due to the advent of responsible mining,environmental regulations, and eco-friendly practices, these factors must also be considered in the analysis. Simulation studies can be financially advantageous for both the optimization of existing mine operations and new development phases in a mine. This study is a new approach to use discrete-event system simulation for mine systems, in order to investigate and possibly reduce environmental impact considering mining haulage performance and production target. A hypothetical layout of a surface coal mine with two pit operations was used for the simulation and animation model. The simulation model includes the animation of the operation. Animation is helpful to enhance the benefit of a mine simulation model. GPSS/Hòand Proof Professionalòwere the software used for the investigation.展开更多
Thermal performance is the most important factor in the development of a borehole heat exchanger utilizing geothermal energy.The thermal performance is affected by many different design parameters and different operat...Thermal performance is the most important factor in the development of a borehole heat exchanger utilizing geothermal energy.The thermal performance is affected by many different design parameters and different operating conditions such as bleeding.This eventually determines the operation and cost efficiency of the borehole heat exchanger system.The thermal performance of an open standing column well (SCW) type geothermal heat exchanger was assessed under the influence of bleeding.For this,a thermal response test rig was established with line-source theory.The test rig also had a bleeding function by releasing fluid while taking additional underground water through the heat exchanger.The thermal response test was performed with an additional constant input heat source.Effective thermal conductivity and thermal resistance were obtained from the measured data.From the measurement,the effective thermal conductivity is found to have 1.47 times higher value when bleeding is applied.The thermal resistance also increases by 1.58 times compared to a non-bleeding case.This trend indicates enhanced heat transfer in the SCW type heat exchanger with a bleeding function.Bleeding,therefore,could be an effective method of achieving a high heat transfer rate in the SCW type heat exchanger with sufficient underground water supply.展开更多
基金Supported by the 111 Projects Foundation from State Administration of Foreign Experts Affairs of China and Ministry of Education of China under Grant No.B07019
文摘In recent years, numerous exploration activities of oil and gas industry have been conducted in ultra deep water. The global offshore industry is building systems today for drilling in even deeper water, progressively using new technologies, and significantly extending existing technologies. This is the general trend in the offshore oil and gas industry. So the technology of ultra-deepwater risers, which is the main tool in drilling oil, is more and more standard. This paper manly focuses on the global analysis of the drilling risers. And it is divided into two parts, operability analysis and hang-off analysis that are used to check the design of the riser. In this paper, the rotation angle and stress of the riser in the drilling mode are calculated to determine the operability envelop. The number of the buoyancy modules has been determined and according to the API standard, all the worked out values have been checked out. From all the above, it is concluded that the operability envelop is relatively small under harsh condition and the number of the buoyancy modules is a little large. And above all, the design of this riser is successful.
文摘A discrete-event system simulation and animation program was developed to enhance the efficiency of a truck-excavator operation and reduce the environmental impact of haulage in an open-cut coal mine with multiple-pit operations. In any mine, a key objective is to have sufficient equipment for production and not to have excess to where it becomes counterproductive. Due to the advent of responsible mining,environmental regulations, and eco-friendly practices, these factors must also be considered in the analysis. Simulation studies can be financially advantageous for both the optimization of existing mine operations and new development phases in a mine. This study is a new approach to use discrete-event system simulation for mine systems, in order to investigate and possibly reduce environmental impact considering mining haulage performance and production target. A hypothetical layout of a surface coal mine with two pit operations was used for the simulation and animation model. The simulation model includes the animation of the operation. Animation is helpful to enhance the benefit of a mine simulation model. GPSS/Hòand Proof Professionalòwere the software used for the investigation.
基金Project supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in2011-2012
文摘Thermal performance is the most important factor in the development of a borehole heat exchanger utilizing geothermal energy.The thermal performance is affected by many different design parameters and different operating conditions such as bleeding.This eventually determines the operation and cost efficiency of the borehole heat exchanger system.The thermal performance of an open standing column well (SCW) type geothermal heat exchanger was assessed under the influence of bleeding.For this,a thermal response test rig was established with line-source theory.The test rig also had a bleeding function by releasing fluid while taking additional underground water through the heat exchanger.The thermal response test was performed with an additional constant input heat source.Effective thermal conductivity and thermal resistance were obtained from the measured data.From the measurement,the effective thermal conductivity is found to have 1.47 times higher value when bleeding is applied.The thermal resistance also increases by 1.58 times compared to a non-bleeding case.This trend indicates enhanced heat transfer in the SCW type heat exchanger with a bleeding function.Bleeding,therefore,could be an effective method of achieving a high heat transfer rate in the SCW type heat exchanger with sufficient underground water supply.