The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air arou...The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air around the MEMS switch membrane. An analytical expression that approximately computes the displacement induced by outside shock is obtained. According to the expression, the minimum required mechanical stiffness constant of an MEMS switch beam in some maximum tolerated insertion loss condition and some external inertial shock environment or the insertion loss induced by external inertial shock can also be obtained. The influence is also illustrated with an RF MEMS capacitive switch example,which shows that outside environment factors have to be taken into account when designing RF MEMS capacitive switches working in low vacuum. While encapsulating RF MEMS switches in low vacuum diminishes the air damping and improves the switch speed and operation voltage,the performances of a switch is incident to being influenced by outside environment. This study is very useful for the optimized design of RF MEMS capacitive switches working in low vacuum.展开更多
A novel ε-type solenoid actuator is proposed to improve the dynamic response of electro-pneumatic ejector valves by reducing moving mass weight. A finite element analysis (FEA) model has been developed to describe th...A novel ε-type solenoid actuator is proposed to improve the dynamic response of electro-pneumatic ejector valves by reducing moving mass weight. A finite element analysis (FEA) model has been developed to describe the static and dynamic operations of the valves. Compared with a conventional E-type actuator, the proposed ε-type actuator reduced the moving mass weight by almost 65% without significant loss of solenoid force, and reduced the response time (RT) typically by 20%. Prototype valves were designed and fabricated based on the proposed ε-type actuator model. An experimental setup was also established to investigate the dynamic characteristics of valves. The experimental results of the dynamics of valves agreed well with simulations, indicating the validity of the FEA model.展开更多
The applicability of a commercial Pt-Sn/Al2O3 isobutane dehydrogenation catalyst in dehydrogenation of propane was studied. Catalyst performance tests were carded out in a fixed-bed quartz reactor under different oper...The applicability of a commercial Pt-Sn/Al2O3 isobutane dehydrogenation catalyst in dehydrogenation of propane was studied. Catalyst performance tests were carded out in a fixed-bed quartz reactor under different operating conditions. Generally, as the factors improving propane conversion decrease the propylene selectivity, the optimal operating condition to maximize propylene yield is expected. The optimal condition was obtamed by the experimental design method. The investigated parameters were temperature, hydrogen/hydrocarbon (HE/HC) ratio and space velocity, being changed in three levels. Constrains such as the susceptibility of the catalyst components to sintering or phase transformation were also taken into account. Activity, selectivity and stability of the catalyst were considered as the measured response factors, while the space-time-yield (STY) was considered as the variable to be optimized due to its commercial interest. A STY of 16 mol.kg^-1.h^-1 was achieved under the optimal conditions of T= 620 ℃, H2/HC = 0.6 and, weight hourly space velocity (WHSV) = 2.2 h^-1. Single carbon-carbon bond rupture was found to be the main route for the formation of lower hydrocarbon byproducts.展开更多
Continuous homogenous azeotropic distillation(CHAD) and pressure-swing distillation(PSD) are explored to separate a minimum-boiling azeotropic system of ethyl acetate and n-hexane. The CHAD process with acetone as the...Continuous homogenous azeotropic distillation(CHAD) and pressure-swing distillation(PSD) are explored to separate a minimum-boiling azeotropic system of ethyl acetate and n-hexane. The CHAD process with acetone as the entrainer and the PSD process with the pressures of 0.1 MPa and 0.6 MPa in two columns are designed and simulated by Aspen Plus. The operating conditions of the two processes are optimized via a sequential modular approach to obtain the minimum total annual cost(TAC). The computational results show that the partially heat integrated pressure-swing distillation(HIPSD) has reduced in the energy cost and TAC by 40.79% and 35.94%, respectively, than the conventional PSD, and has more greatly reduced the energy cost and TAC by 62.61% and 49.26% respectively compared with the CHAD process. The comparison of CHAD process and partially HIPSD process illustrates that the partially HIPSD has more advantages in averting the product pollution, energy saving, and economy.展开更多
文摘The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air around the MEMS switch membrane. An analytical expression that approximately computes the displacement induced by outside shock is obtained. According to the expression, the minimum required mechanical stiffness constant of an MEMS switch beam in some maximum tolerated insertion loss condition and some external inertial shock environment or the insertion loss induced by external inertial shock can also be obtained. The influence is also illustrated with an RF MEMS capacitive switch example,which shows that outside environment factors have to be taken into account when designing RF MEMS capacitive switches working in low vacuum. While encapsulating RF MEMS switches in low vacuum diminishes the air damping and improves the switch speed and operation voltage,the performances of a switch is incident to being influenced by outside environment. This study is very useful for the optimized design of RF MEMS capacitive switches working in low vacuum.
基金Project supported by the Doctoral Fund of Ministry of Education of China (No. 20070335133)the Educational Commission of Zhejiang Province (No. 20070057), China
文摘A novel ε-type solenoid actuator is proposed to improve the dynamic response of electro-pneumatic ejector valves by reducing moving mass weight. A finite element analysis (FEA) model has been developed to describe the static and dynamic operations of the valves. Compared with a conventional E-type actuator, the proposed ε-type actuator reduced the moving mass weight by almost 65% without significant loss of solenoid force, and reduced the response time (RT) typically by 20%. Prototype valves were designed and fabricated based on the proposed ε-type actuator model. An experimental setup was also established to investigate the dynamic characteristics of valves. The experimental results of the dynamics of valves agreed well with simulations, indicating the validity of the FEA model.
基金Supported by the Petrochemical Research&Technology Co. of National Petrochemical Co.
文摘The applicability of a commercial Pt-Sn/Al2O3 isobutane dehydrogenation catalyst in dehydrogenation of propane was studied. Catalyst performance tests were carded out in a fixed-bed quartz reactor under different operating conditions. Generally, as the factors improving propane conversion decrease the propylene selectivity, the optimal operating condition to maximize propylene yield is expected. The optimal condition was obtamed by the experimental design method. The investigated parameters were temperature, hydrogen/hydrocarbon (HE/HC) ratio and space velocity, being changed in three levels. Constrains such as the susceptibility of the catalyst components to sintering or phase transformation were also taken into account. Activity, selectivity and stability of the catalyst were considered as the measured response factors, while the space-time-yield (STY) was considered as the variable to be optimized due to its commercial interest. A STY of 16 mol.kg^-1.h^-1 was achieved under the optimal conditions of T= 620 ℃, H2/HC = 0.6 and, weight hourly space velocity (WHSV) = 2.2 h^-1. Single carbon-carbon bond rupture was found to be the main route for the formation of lower hydrocarbon byproducts.
基金Supported by the Education Foundation of Chongqing(KJ1712307)the Application Technology Research and Developments Foundation of Fuling Technology Board(FLKJ,2016ABA1026)the Young Foundation of Yangtze Normal University(2015XJXM03)
文摘Continuous homogenous azeotropic distillation(CHAD) and pressure-swing distillation(PSD) are explored to separate a minimum-boiling azeotropic system of ethyl acetate and n-hexane. The CHAD process with acetone as the entrainer and the PSD process with the pressures of 0.1 MPa and 0.6 MPa in two columns are designed and simulated by Aspen Plus. The operating conditions of the two processes are optimized via a sequential modular approach to obtain the minimum total annual cost(TAC). The computational results show that the partially heat integrated pressure-swing distillation(HIPSD) has reduced in the energy cost and TAC by 40.79% and 35.94%, respectively, than the conventional PSD, and has more greatly reduced the energy cost and TAC by 62.61% and 49.26% respectively compared with the CHAD process. The comparison of CHAD process and partially HIPSD process illustrates that the partially HIPSD has more advantages in averting the product pollution, energy saving, and economy.