In the evaluation of the necessary measurement of aeronautical means to face to a certain military operative problem, the development of an appropriate tool is of importance. Conventional techniques are considered ina...In the evaluation of the necessary measurement of aeronautical means to face to a certain military operative problem, the development of an appropriate tool is of importance. Conventional techniques are considered inadequate in the analysis of military operative problems in presence of a self-attrition behavior from one of the involved parts. In this paper a traditional algorithm for measuring military power is implemented and analyzed and then we improve this traditional algorithm on the basis of the kind of degradation that systematically takes place in self-destructive systems. In terms of traditional analysis, the evolution of a war is essentially an unreal sequence of repetitive cycles. So a time-dependent function was introduced in improved the algorithm. The development of this tool of prediction has the aim to argue the management of taking decisions in this type of crisis and complements itself with historical arguments or references of rigor. A computer software show results that allows to estimate the costs of the support and to visualize the graphs associated with the degradation of the system and his temporary evolution. The improved algorithm is more suitable than the traditional one in software simulations.展开更多
Because zirconium alloy cladding is the first containment barrier for fission products, its mechanical integrity is the most important concern. In view of the mechanical integrity, stress and strain are the main facto...Because zirconium alloy cladding is the first containment barrier for fission products, its mechanical integrity is the most important concern. In view of the mechanical integrity, stress and strain are the main factors that affect the cladding performance during normal or off-normal operation, which induces force interaction between the pellet and cladding. In the case of a normal operation period, to estimate the cladding stress and strain, various models and codes have been developed using a simplified 1D (one-dimensional) assumption. However, in the case of a slow ramp during start-up and shut-down and a fast transient such as an AOO (anticipated operational occurrence), it is difficult for a 1D model to simulate the cladding stress and strain accurately due to its modeling limitation. To model a large deformation along the radial and axial directions such as a "'ballooning" phenomenon, FE (finite element) modeling, which can simulate a higher degree of freedom, is an indispensable requirement. In this work, an axisymmetric two-dimensional FE module, which will be integrated into the transient fuel performance code, has been developed. To solve the mechanical equilibrium of the pellet-cladding system, taking into account the geometrical and material non-linearities, the FE module employs an ESF (effective-stress-function) algorithm. Verifications of the FE module for the cases of thermal and elastic analyes were performed using the results of ANSYS 13.0.展开更多
文摘In the evaluation of the necessary measurement of aeronautical means to face to a certain military operative problem, the development of an appropriate tool is of importance. Conventional techniques are considered inadequate in the analysis of military operative problems in presence of a self-attrition behavior from one of the involved parts. In this paper a traditional algorithm for measuring military power is implemented and analyzed and then we improve this traditional algorithm on the basis of the kind of degradation that systematically takes place in self-destructive systems. In terms of traditional analysis, the evolution of a war is essentially an unreal sequence of repetitive cycles. So a time-dependent function was introduced in improved the algorithm. The development of this tool of prediction has the aim to argue the management of taking decisions in this type of crisis and complements itself with historical arguments or references of rigor. A computer software show results that allows to estimate the costs of the support and to visualize the graphs associated with the degradation of the system and his temporary evolution. The improved algorithm is more suitable than the traditional one in software simulations.
文摘Because zirconium alloy cladding is the first containment barrier for fission products, its mechanical integrity is the most important concern. In view of the mechanical integrity, stress and strain are the main factors that affect the cladding performance during normal or off-normal operation, which induces force interaction between the pellet and cladding. In the case of a normal operation period, to estimate the cladding stress and strain, various models and codes have been developed using a simplified 1D (one-dimensional) assumption. However, in the case of a slow ramp during start-up and shut-down and a fast transient such as an AOO (anticipated operational occurrence), it is difficult for a 1D model to simulate the cladding stress and strain accurately due to its modeling limitation. To model a large deformation along the radial and axial directions such as a "'ballooning" phenomenon, FE (finite element) modeling, which can simulate a higher degree of freedom, is an indispensable requirement. In this work, an axisymmetric two-dimensional FE module, which will be integrated into the transient fuel performance code, has been developed. To solve the mechanical equilibrium of the pellet-cladding system, taking into account the geometrical and material non-linearities, the FE module employs an ESF (effective-stress-function) algorithm. Verifications of the FE module for the cases of thermal and elastic analyes were performed using the results of ANSYS 13.0.