To analyze the modeling methods of the dry friction rotor system,a local linearization model of the dry friction damping rotor system was built based on the simplified model of the wave-shaped steel-belt supporting ro...To analyze the modeling methods of the dry friction rotor system,a local linearization model of the dry friction damping rotor system was built based on the simplified model of the wave-shaped steel-belt supporting rotor system.In this model,the linear stiffness of damper closed to pre-deformation was defined as the stiffness of damper,the maximum amplitude of the rotor was calculated according to the load and linear rotor,and the damper's parameters were defined on the basis of the energy dissipation parameters.The presented method can reflect the hysteresis characteristics and is easy to calculate.Experimental results demonstrate the accuracy and feasibility of this method.展开更多
A356 is a high strength aluminium-silicon cast alloy used in food,chemical,marine,electrical and automotive industries.Fusion welding of this cast alloy will lead to many problems such as porosity,micro-fissuring,and ...A356 is a high strength aluminium-silicon cast alloy used in food,chemical,marine,electrical and automotive industries.Fusion welding of this cast alloy will lead to many problems such as porosity,micro-fissuring,and hot cracking.However,friction stir welding(FSW) can be used to weld this cast alloy without above mentioned defects.An attempt was made to study the effect of FSW process parameters on the tensile strength of cast A356 aluminium alloy.Joints were made using different combinations of tool rotation speed,welding speed and axial force.The quality of weld zone was analyzed by macrostructure and microstructure analyses.Tensile strengths of the joints were evaluated and correlated with the weld zone hardness and microstructure.The joint fabricated using a rotational speed of 1000 r/min,a welding speed of 75 mm/min and an axial force of 5 kN showed a higher tensile strength compared to the other joints.展开更多
In marine application,marine grade steel is generally used for haul and superstructures.However,aluminum has also become a good choice due to its lightweight qualities,while rusting of aluminum is minimal compared to ...In marine application,marine grade steel is generally used for haul and superstructures.However,aluminum has also become a good choice due to its lightweight qualities,while rusting of aluminum is minimal compared to steel.In this paper a study on friction stir welding of aluminum alloys was presented.The present investigation deals with the effects of different friction stir welding tool geometries on mechanical strength and the microstructure properties of aluminum alloy welds.Three distinct tool geometries with different types of shoulder and tool probe profiles were used in the investigation according to the design matrix.The effects of each tool shoulder and probe geometry on the weld was evaluated.It was also observed that the friction stir weld tool geometry has a significant effect on the weldment reinforcement,microhardness,and weld strength.展开更多
Friction stir welding is the preferred joining method for aluminium matrix composites. It is a solid-state process which prevents the formation of the intermetallic precipitates responsible for degradation of mechanic...Friction stir welding is the preferred joining method for aluminium matrix composites. It is a solid-state process which prevents the formation of the intermetallic precipitates responsible for degradation of mechanical properties in fusion welds of these composites. The major concern in friction stir welding is the wear of the welding tool pin. The wear is due to the prolonged contact between the tool and the harder reinforcements in the composite materials. This paper provides an overview of the effects of different parameters of friction stir welding on the tool wear. It was found that the total amount of material removed from the tool is in directproportion to the rotational speed of the tool and the length of the weld but inversely proportional to the transverse rate. The result seven demonstrate that the tool geometry also has significant influence on the wear resistance of the tool. The tool even converts itself into a self-optimized shape to minimize its wear.展开更多
To separately investigate the potential effects of shoulder on increasing interfacial bonded area and its mechanism,friction stir lap welding(FSLW)of 1.8 mm thick Al sheets without and with insert(copper foil or Al-12...To separately investigate the potential effects of shoulder on increasing interfacial bonded area and its mechanism,friction stir lap welding(FSLW)of 1.8 mm thick Al sheets without and with insert(copper foil or Al-12Si powders)was conducted using a special tool without pin,respectively.All the FSLW joints(without insert)fractured within top sheet but not along faying surface,suggesting that the shoulder plays an important role comparable or superior to pin in FSLW of thin sheets.Using several specially designed experimental techniques,the presence of forging and torsion actions of shoulder was demonstrated.The fracture surface of the joints with inserts indicates that interfacial wear occurs,which results in the oxide film disruption and vertically interfacial mixing over the area forged by shoulder with a larger diameter than a general pin,especially at the boundary region of weld.The boundary effect can be induced and enhanced by forging effect and torsion effect.展开更多
The present paper discusses the modeling of tool geometry effects on the friction stir aluminum welds using response surface methodology. The friction stir welding tools were designed with different shoulder and tool ...The present paper discusses the modeling of tool geometry effects on the friction stir aluminum welds using response surface methodology. The friction stir welding tools were designed with different shoulder and tool probe geometries based on a design matrix. The matrix for the tool designing was made for three types of tools, based on three types of probes, with three levels each for defining the shoulder surface type and probe profile geometries. Then, the effects of tool shoulder and probe geometries on friction stirred aluminum welds were experimentally investigated with respect to weld strength, weld cross section area, grain size of weld and grain size of thermo-mechanically affected zone. These effects were modeled using multiple and response surface regression analysis. The response surface regression modeling were found to be appropriate for defining the friction stir weldment characteristics.展开更多
文摘To analyze the modeling methods of the dry friction rotor system,a local linearization model of the dry friction damping rotor system was built based on the simplified model of the wave-shaped steel-belt supporting rotor system.In this model,the linear stiffness of damper closed to pre-deformation was defined as the stiffness of damper,the maximum amplitude of the rotor was calculated according to the load and linear rotor,and the damper's parameters were defined on the basis of the energy dissipation parameters.The presented method can reflect the hysteresis characteristics and is easy to calculate.Experimental results demonstrate the accuracy and feasibility of this method.
文摘A356 is a high strength aluminium-silicon cast alloy used in food,chemical,marine,electrical and automotive industries.Fusion welding of this cast alloy will lead to many problems such as porosity,micro-fissuring,and hot cracking.However,friction stir welding(FSW) can be used to weld this cast alloy without above mentioned defects.An attempt was made to study the effect of FSW process parameters on the tensile strength of cast A356 aluminium alloy.Joints were made using different combinations of tool rotation speed,welding speed and axial force.The quality of weld zone was analyzed by macrostructure and microstructure analyses.Tensile strengths of the joints were evaluated and correlated with the weld zone hardness and microstructure.The joint fabricated using a rotational speed of 1000 r/min,a welding speed of 75 mm/min and an axial force of 5 kN showed a higher tensile strength compared to the other joints.
文摘In marine application,marine grade steel is generally used for haul and superstructures.However,aluminum has also become a good choice due to its lightweight qualities,while rusting of aluminum is minimal compared to steel.In this paper a study on friction stir welding of aluminum alloys was presented.The present investigation deals with the effects of different friction stir welding tool geometries on mechanical strength and the microstructure properties of aluminum alloy welds.Three distinct tool geometries with different types of shoulder and tool probe profiles were used in the investigation according to the design matrix.The effects of each tool shoulder and probe geometry on the weld was evaluated.It was also observed that the friction stir weld tool geometry has a significant effect on the weldment reinforcement,microhardness,and weld strength.
文摘Friction stir welding is the preferred joining method for aluminium matrix composites. It is a solid-state process which prevents the formation of the intermetallic precipitates responsible for degradation of mechanical properties in fusion welds of these composites. The major concern in friction stir welding is the wear of the welding tool pin. The wear is due to the prolonged contact between the tool and the harder reinforcements in the composite materials. This paper provides an overview of the effects of different parameters of friction stir welding on the tool wear. It was found that the total amount of material removed from the tool is in directproportion to the rotational speed of the tool and the length of the weld but inversely proportional to the transverse rate. The result seven demonstrate that the tool geometry also has significant influence on the wear resistance of the tool. The tool even converts itself into a self-optimized shape to minimize its wear.
文摘To separately investigate the potential effects of shoulder on increasing interfacial bonded area and its mechanism,friction stir lap welding(FSLW)of 1.8 mm thick Al sheets without and with insert(copper foil or Al-12Si powders)was conducted using a special tool without pin,respectively.All the FSLW joints(without insert)fractured within top sheet but not along faying surface,suggesting that the shoulder plays an important role comparable or superior to pin in FSLW of thin sheets.Using several specially designed experimental techniques,the presence of forging and torsion actions of shoulder was demonstrated.The fracture surface of the joints with inserts indicates that interfacial wear occurs,which results in the oxide film disruption and vertically interfacial mixing over the area forged by shoulder with a larger diameter than a general pin,especially at the boundary region of weld.The boundary effect can be induced and enhanced by forging effect and torsion effect.
基金supported by the Department of Scientific and Industrial Research(DSIR),India
文摘The present paper discusses the modeling of tool geometry effects on the friction stir aluminum welds using response surface methodology. The friction stir welding tools were designed with different shoulder and tool probe geometries based on a design matrix. The matrix for the tool designing was made for three types of tools, based on three types of probes, with three levels each for defining the shoulder surface type and probe profile geometries. Then, the effects of tool shoulder and probe geometries on friction stirred aluminum welds were experimentally investigated with respect to weld strength, weld cross section area, grain size of weld and grain size of thermo-mechanically affected zone. These effects were modeled using multiple and response surface regression analysis. The response surface regression modeling were found to be appropriate for defining the friction stir weldment characteristics.