期刊文献+
共找到258篇文章
< 1 2 13 >
每页显示 20 50 100
Improved AVOA based on LSSVM for wind power prediction
1
作者 ZHANG Zhonglin WEI Fan +1 位作者 YAN Guanghui MA Haiyun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期344-359,共16页
Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the predi... Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the prediction model of multi-objective optimization least squares support vector machine(LSSVM).Firstly,the original wind power time series was decomposed into a certain number of intrinsic modal components(IMFs)using variational modal decomposition(VMD).Secondly,random numbers in population initialization were replaced by Tent chaotic mapping,multi-objective LSSVM optimization was introduced by AVOA improved by elitist non-dominated sorting and crowding operator,and then each component was predicted.Finally,Tent multi-objective AVOA-LSSVM(TMOALSSVM)method was used to sum each component to obtain the final prediction result.The simulation results show that the improved AVOA based on Tent chaotic mapping,the improved non-dominated sorting algorithm with elite strategy,and the improved crowding operator are the optimal models for single-objective and multi-objective prediction.Among them,TMOALSSVM model has the smallest average error of stroke power values in four seasons,which are 0.0694,0.0545 and 0.0211,respectively.The average value of DS statistics in the four seasons is 0.9902,and the statistical value is the largest.The proposed model effectively predicts four seasons of wind power values on lateral and longitudinal precision,and faster and more accurately finds the optimal solution on the current solution space sets,which proves that the method has a certain scientific significance in the development of wind power prediction technology. 展开更多
关键词 African vulture optimization algorithm(AVOA) least squares support vector machine(LSSVM) variational mode decomposition(VMD) multi-objective prediction wind power
下载PDF
SVM在基因表达数据分类中的研究和应用 被引量:2
2
作者 詹超 胡江洪 《计算机技术与发展》 2006年第3期107-109,共3页
介绍了一种使用基因芯片实验产生的基因表达数据对功能基因进行分类的方法,该方法是以支持向量机(SVM)理论为基础的。文中描述了径向基函数SVM,与其它SVM相比,径向基函数SVM在基因分类中有更好的性能。SVM的理论基础是统计学习理论,它... 介绍了一种使用基因芯片实验产生的基因表达数据对功能基因进行分类的方法,该方法是以支持向量机(SVM)理论为基础的。文中描述了径向基函数SVM,与其它SVM相比,径向基函数SVM在基因分类中有更好的性能。SVM的理论基础是统计学习理论,它不仅结构简单,而且技术性能高,泛化能力强,在基因表达式分类中表现出有很多优点,成为热点研究方向。 展开更多
关键词 基因微序列 基因表达式 支向量机 核函数 模式分类
下载PDF
Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction 被引量:21
3
作者 史秀志 周健 +2 位作者 吴帮标 黄丹 魏威 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期432-441,共10页
Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50... Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50) resulting from rock blast fragmentation in various mines based on the statistical learning theory. The data base consisted of blast design parameters, explosive parameters, modulus of elasticity and in-situ block size. The seven input independent variables used for the SVMs model for the prediction of X50 of rock blast fragmentation were the ratio of bench height to drilled burden (H/B), ratio of spacing to burden (S/B), ratio of burden to hole diameter (B/D), ratio of stemming to burden (T/B), powder factor (Pf), modulus of elasticity (E) and in-situ block size (XB). After using the 90 sets of the measured data in various mines and rock formations in the world for training and testing, the model was applied to 12 another blast data for validation of the trained support vector regression (SVR) model. The prediction results of SVR were compared with those of artificial neural network (ANN), multivariate regression analysis (MVRA) models, conventional Kuznetsov method and the measured X50 values. The proposed method shows promising results and the prediction accuracy of SVMs model is acceptable. 展开更多
关键词 rock fragmentation BLASTING mean panicle size (X50) support vector machines (SVMs) PREDICTION
下载PDF
Predicting pillar stability for underground mine using Fisher discriminant analysis and SVM methods 被引量:16
4
作者 周健 李夕兵 +2 位作者 史秀志 魏威 吴帮标 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2734-2743,共10页
The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability ... The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines. 展开更多
关键词 underground mine pillar stability Fisher discriminant analysis (FDA) support vector machines (SVMs) PREDICTION
下载PDF
GRADE-LIFE PROGNOSTIC MODEL OF AIRCRAFT ENGINE BEARING 被引量:6
5
作者 苗学问 牛枞 +2 位作者 杨云 韩磊 洪杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第2期171-178,共8页
Research on practical and verifiable prediction methods for the service life of bearings plays a critical role in improving the reliability and safety of aircraft engines. The concept of grade-life (GL) is introduce... Research on practical and verifiable prediction methods for the service life of bearings plays a critical role in improving the reliability and safety of aircraft engines. The concept of grade-life (GL) is introduced to de- scribe the service life of bearings. A GL prognostic model for aircraft engine bearings is proposed based on sup- port vector machine (SVM) and fuzzy logic inference. Firstly, the mathematical model is discussed to predict the physics-based GL (PGL). Then, the diagnostic estimation model based on SVM is presented in detail to predict the empirical GL (EPL). Thirdly, a fuzzy logic inference is adopted to fuse two GL predicted results. Finally, the GL prognostic model is verified by the run-to-failure data acquired from an accelerated life test of an aircraft bearing. The results show that the model provides a more practical and reliable prediction for the service life of bearings. 展开更多
关键词 aircraft engine BEARING grade-life fuzzy logic inference SVM
下载PDF
Grain Yield Prediction for Irrigation District Based on LS-SVM 被引量:5
6
作者 宰松梅 贾艳辉 +1 位作者 温季 郭冬冬 《Agricultural Science & Technology》 CAS 2009年第6期1-3,6,共4页
Commonly used grain yield forecasting models were briefly reviewed, and a yield prediction model of irrigation district was established based on least squares support vector machines (LS-SVM). The grain yield in irr... Commonly used grain yield forecasting models were briefly reviewed, and a yield prediction model of irrigation district was established based on least squares support vector machines (LS-SVM). The grain yield in irrigation district was analog calculated. And the test samples were used to compare with gray prediction, and neural network model. The maximum predicted error of least squares SVM was 7.12%, with an average error of 4.81%. The results showed that LS-SVM model has high prediction accuracy and strong generalization ability. So it could be used as a new method for irrigation district yield prediction 展开更多
关键词 YIELD PREDICTION LS-SVM MODEL
下载PDF
Support vector machines for emotion recognition in Chinese speech 被引量:8
7
作者 王治平 赵力 邹采荣 《Journal of Southeast University(English Edition)》 EI CAS 2003年第4期307-310,共4页
Support vector machines (SVMs) are utilized for emotion recognition in Chinese speech in this paper. Both binary class discrimination and the multi class discrimination are discussed. It proves that the emotional fe... Support vector machines (SVMs) are utilized for emotion recognition in Chinese speech in this paper. Both binary class discrimination and the multi class discrimination are discussed. It proves that the emotional features construct a nonlinear problem in the input space, and SVMs based on nonlinear mapping can solve it more effectively than other linear methods. Multi class classification based on SVMs with a soft decision function is constructed to classify the four emotion situations. Compared with principal component analysis (PCA) method and modified PCA method, SVMs perform the best result in multi class discrimination by using nonlinear kernel mapping. 展开更多
关键词 speech signal emotion recognition support vector machines
下载PDF
Tribological properties and wear prediction model of TiC particles reinforced Ni-base alloy composite coatings 被引量:4
8
作者 谭业发 何龙 +2 位作者 王小龙 洪翔 王伟刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2566-2573,共8页
TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite ... TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction. 展开更多
关键词 TiC particles Ni-based alloy composite coating least square support vector machine(LS-SVM) wear prediction model
下载PDF
Support vector machine for prediction of siRNA silencing efficacy 被引量:2
9
作者 吴建盛 胡敏菁 +3 位作者 周童 翁建洪 江澎 孙啸 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期501-504,共4页
In order to assist the design of short interfering ribonucleic acids (siRNA), 573 non-redundant siRNAs were collected from published literatures and the relationship between siRNAs sequences and RNA interference (R... In order to assist the design of short interfering ribonucleic acids (siRNA), 573 non-redundant siRNAs were collected from published literatures and the relationship between siRNAs sequences and RNA interference (RNAi) effect is analyzed by a support vector machine (SVM) based algorithm relied on a basebase correlation (BBC) feature. The results show that the proposed algorithm has the highest area under curve (AUC) value (0. 73) of the receive operating characteristic (ROC) curve and the greatest r value (0. 43) of the Pearson's correlation coefficient. This indicates that the proposed algorithm is better than the published algorithms on the collected datasets and that more attention should be paid to the base-base correlation information in future siRNA design. 展开更多
关键词 short interfering ribonucleic acid (siRNA) support vector machine base-base correlation receive operating characteristic (ROC) curve
下载PDF
ESSENTIAL RELATIONSHIP BETWEEN DOMAIN-BASED ONE-CLASS CLASSIFIERS AND DENSITY ESTIMATION 被引量:2
10
作者 陈斌 李斌 +1 位作者 冯爱民 潘志松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期275-281,共7页
One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of t... One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships. 展开更多
关键词 one-class support vector machine(OCSVM) support vector data description(SVDD) kernel density estimation
下载PDF
Phishing detection method based on URL features 被引量:2
11
作者 曹玖新 董丹 +1 位作者 毛波 王田峰 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期134-138,共5页
In order to effectively detect malicious phishing behaviors, a phishing detection method based on the uniform resource locator (URL) features is proposed. First, the method compares the phishing URLs with legal ones... In order to effectively detect malicious phishing behaviors, a phishing detection method based on the uniform resource locator (URL) features is proposed. First, the method compares the phishing URLs with legal ones to extract the features of phishing URLs. Then a machine learning algorithm is applied to obtain the URL classification model from the sample data set training. In order to adapt to the change of a phishing URL, the classification model should be constantly updated according to the new samples. So, an incremental learning algorithm based on the feedback of the original sample data set is designed. The experiments verify that the combination of the URL features extracted in this paper and the support vector machine (SVM) classification algorithm can achieve a high phishing detection accuracy, and the incremental learning algorithm is also effective. 展开更多
关键词 uniform resource locator (URL) features phishingdetection support vector machine incremental learning
下载PDF
Acoustic emission source identification based on harmonic wavelet packet and support vector machine 被引量:4
12
作者 于金涛 丁明理 +2 位作者 孟凡刚 乔玉良 王祁 《Journal of Southeast University(English Edition)》 EI CAS 2011年第3期300-304,共5页
In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature... In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction. 展开更多
关键词 harmonic wavelet packet hierarchy support vector machine acoustic emission source identification
下载PDF
Combination Computing of Support Vector Machine, Support Vector Regression and Molecular Docking for Potential Cytochrome P450 1A2 Inhibitors 被引量:1
13
作者 陈茜 乔连生 +2 位作者 蔡漪涟 张燕玲 李贡宇 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第5期629-634,I0002,共7页
The computational approaches of support vector machine (SVM), support vector regression (SVR) and molecular docking were widely utilized for the computation of active compounds. In this work, to improve the accura... The computational approaches of support vector machine (SVM), support vector regression (SVR) and molecular docking were widely utilized for the computation of active compounds. In this work, to improve the accuracy and reliability of prediction, the strategy of combining the above three computational approaches was applied to predict potential cytochrome P450 1A2 (CYP1A2) inhibitors. The accuracy of the optimal SVM qualitative model was 99.432%, 97.727%, and 91.667% for training set, internal test set and external test set, respectively, showing this model had high discrimination ability. The R2 and mean square error for the optimal SVR quantitative model were 0.763, 0.013 for training set, and 0.753, 0.056 for test set respectively, indicating that this SVR model has high predictive ability for the biolog-ical activities of compounds. According to the results of the SVM and SVR models, some types of descriptors were identi ed to be essential to bioactivity prediction of compounds, including the connectivity indices, constitutional descriptors and functional group counts. Moreover, molecular docking studies were used to reveal the binding poses and binding a n-ity of potential inhibitors interacting with CYP1A2. Wherein, the amino acids of THR124 and ASP320 could form key hydrogen bond interactions with active compounds. And the amino acids of ALA317 and GLY316 could form strong hydrophobic bond interactions with active compounds. The models obtained above were applied to discover potential CYP1A2 inhibitors from natural products, which could predict the CYPs-mediated drug-drug inter-actions and provide useful guidance and reference for rational drug combination therapy. A set of 20 potential CYP1A2 inhibitors were obtained. Part of the results was consistent with references, which further indicates the accuracy of these models and the reliability of this combinatorial computation strategy. 展开更多
关键词 Support vector machine Support vector regression Molecular docking CYPIA2 inhibitor
下载PDF
ONLINE PARSIMONIOUS LEAST SQUARES SUPPORT VECTOR REGRESSION AND ITS APPLICATION 被引量:2
14
作者 赵永平 孙健国 王健康 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期280-287,共8页
A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response tim... A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response time is curtailed. Besides, an OPLS-SVR based analytical redundancy technique is presented to cope with the sensor failure and drift problems to guarantee that the provided signals for the aeroengine controller are correct and acceptable. Experiments on the sensor failure and drift show the effectiveness and the validity of the proposed analytical redundancy. 展开更多
关键词 support vector machines SENSORS least squares analytical redundancy aeroengines
下载PDF
Application of support vector machine in trip chaining pattern recognition and analysis of explanatory variable effects 被引量:2
15
作者 杨硕 邓卫 程龙 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期106-114,共9页
In order to improve the accuracy of travel demand forecast and considering the distribution of travel behaviors within time dimension, a trip chaining pattern recognition model was established based on activity purpos... In order to improve the accuracy of travel demand forecast and considering the distribution of travel behaviors within time dimension, a trip chaining pattern recognition model was established based on activity purposes by applying three methods: the support vector machine (SVM) model, the radial basis function neural network (RBFNN) model and the multinomial logit (MNL) model. The effect of explanatory factors on trip chaining behaviors and their contribution to model performace were investigated by sensitivity analysis. Results show that the SVM model has a better performance than the RBFNN model and the MNL model due to its higher overall and partial accuracy, indicating its recognition advantage under a smai sample size scenario. It is also proved that the SVM model is capable of estimating the effect of multi-category factors on trip chaining behaviors more accurately. The different contribution of explanatory, factors to trip chaining pattern recognition reflects the importance of refining trip chaining patterns ad exploring factors that are specific to each pattern. It is shown that the SVM technology in travel demand forecast modeling and analysis of explanatory variable effects is practical. 展开更多
关键词 trip chaining patterns support vector machine recognition performance sensitivity analysis
下载PDF
NOVEL WEIGHTED LEAST SQUARES SUPPORT VECTOR REGRESSION FOR THRUST ESTIMATION ON PERFORMANCE DETERIORATION OF AERO-ENGINE 被引量:2
16
作者 苏伟生 赵永平 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期25-32,共8页
A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using ... A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration 展开更多
关键词 intelligent engine control least squares support vector machine performance deterioration
下载PDF
Application of a compound controller based on fuzzy control and support vector machine to ship's boiler-turbine coordinated control system 被引量:2
17
作者 刘胜 李妍妍 《Journal of Marine Science and Application》 2009年第1期33-39,共7页
Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy b... Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness. 展开更多
关键词 ship boiler-turbine coordinated system support vector machine inverse control compound control
下载PDF
BOOSTING SPARSE LEAST SQUARES SUPPORT VECTOR REGRESSION (BSLSSVR) AND ITS APPLICATION TO THRUST ESTIMATION 被引量:2
18
作者 赵永平 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期254-261,共8页
In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of ... In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰. 展开更多
关键词 least squares support vector machines direct thrust control boosting technique
下载PDF
Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm 被引量:1
19
作者 胡玉霞 张红涛 +1 位作者 罗康 张恒源 《Agricultural Science & Technology》 CAS 2012年第2期457-459,共3页
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored... [Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible. 展开更多
关键词 Stored-grain insects Ant colony optimization algorithm Support vector machine Feature extraction RECOGNITION
下载PDF
Semi-supervised least squares support vector machine algorithm:application to offshore oil reservoir 被引量:1
20
作者 罗伟平 李洪奇 石宁 《Applied Geophysics》 SCIE CSCD 2016年第2期406-415,421,共11页
At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict th... At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area. 展开更多
关键词 Semi-supervised learning least squares support vector machine seismic attributes reservoir prediction
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部