The interaction of surrounding rock with a support system in deep underground tunnels has attracted extensive interest from researchers.However,the effect of high axial stress on tunnel stability has not been fully co...The interaction of surrounding rock with a support system in deep underground tunnels has attracted extensive interest from researchers.However,the effect of high axial stress on tunnel stability has not been fully considered.In this study,compression tests with and without confining pressure were conducted on solid specimens and hollow cylinder specimens filled with aluminium,lead,and polymethyl methacrylate(PMMA)to investigate the strength,deformation and failure characteristics of circular roadways subjected to high axial stress.The influence of the three-dimensional stress on the surrounding rock supported with different stiffness was studied.The results indicate that the strength and peak strain of hollow cylinders filled with PMMA are higher than those of hollow cylinders filled with aluminium or lead,indicating that flexible retaining is beneficial for roadway stability.The results obtained in this paper can contribute to better understanding the support failure of a buried roadway subjected to high axial stress and thus to analyzing and evaluating roadway stability.展开更多
In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support i...In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines.展开更多
A test method for the non-destructive determination of bolt length,anchoring length,and bolt body force is described.This addresses the problems of low accuracy,limited number of data,and untimely warning signs encoun...A test method for the non-destructive determination of bolt length,anchoring length,and bolt body force is described.This addresses the problems of low accuracy,limited number of data,and untimely warning signs encountered with existing test methods.Numerical simulations of the bolt,resin,and rock system show that the length accuracy when using the velocity wave is lower than when using the acceleration wave.It is accepted practice to use the acceleration wave for length tests because of improved signal to noise ratios of the waveforms.Laboratory and in situ underground tests showed that the precision of the measurements meets field requirements.Using this method the anchor properties of each single bolt and,thus,the safety of the entire roadway support may be evaluated.展开更多
A simplified method was proposed for the design of concrete lining in underground rock cavern/tunnel against shock loading. The loading may result from the detonation of explosives on ground surface or ground penetrat...A simplified method was proposed for the design of concrete lining in underground rock cavern/tunnel against shock loading. The loading may result from the detonation of explosives on ground surface or ground penetration projectiles exploding adjacent to the cavern/tunnel. The resulting problem necessitates the solution of the dynamics of a beam loaded by a transient pressure uniformly distributed over the span. According to mechanical characteristics of the system with rock bolt and shotcrete, a dynamic support design method based on equivalent single degree of freedom (SDOF) was put forward. The SDOF method was applied to obtaining the maximum displacement at the mid-span of the beam, which is often the controlling factor in the blast-resistant design. In the formulation of the problem, the proposed method combines the phenomena of spalling and structural dynamics theory. An example is provided to demonstrate the applicability of this simplified method.展开更多
The basic characteristics of the soft rock roadway under the dynamic pressure are analyzed. At the same time, the three fundamental approaches for controlling the surrounding rock are proposed, which are improving the...The basic characteristics of the soft rock roadway under the dynamic pressure are analyzed. At the same time, the three fundamental approaches for controlling the surrounding rock are proposed, which are improving the surrounding rock strength, lowering the rock mass stress and selecting the reasonable supporting technology. The research results are elucidated, including the distribution of the surrounding rock plastic zone, the movement and damage of the surrounding rock under the dynamic pressure, controlling the floor heave through reinforcing the roadway walls and corners, the new route to develop the roadway metal supporting technique, the key theory and technique for the bolt supporting in the coal roadway, the performance and prospect of the ZKD high water content quick setting material, and so on. Finally, some personally views are put forward about the roadway metal supporting, bolt supporting, new material and the stress relief under the high stress condition.展开更多
基金Projects(11772357,51474103,51504092)supported by the National Natural Science Foundation of ChinaProject(2016YFC0600706)supported by the National Key Research and Development Program of China
文摘The interaction of surrounding rock with a support system in deep underground tunnels has attracted extensive interest from researchers.However,the effect of high axial stress on tunnel stability has not been fully considered.In this study,compression tests with and without confining pressure were conducted on solid specimens and hollow cylinder specimens filled with aluminium,lead,and polymethyl methacrylate(PMMA)to investigate the strength,deformation and failure characteristics of circular roadways subjected to high axial stress.The influence of the three-dimensional stress on the surrounding rock supported with different stiffness was studied.The results indicate that the strength and peak strain of hollow cylinders filled with PMMA are higher than those of hollow cylinders filled with aluminium or lead,indicating that flexible retaining is beneficial for roadway stability.The results obtained in this paper can contribute to better understanding the support failure of a buried roadway subjected to high axial stress and thus to analyzing and evaluating roadway stability.
基金Projects(51304125,51379114)supported by the National Natural Science Foundation of ChinaProject(BS2013NJ004)supported by Award Fund for Outstanding Young and Middle-Aged Scientist of Shangdong Province,ChinaProject(201301004)supported by the Innovation Fund for Postdoctor of Shandong Province,China
文摘In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines.
基金provided by the National Natural Science Foundation of China (No. 50874104)the Scientific Research Industry Promotion Project of Jiangsu Province of China(No. JH07-023)
文摘A test method for the non-destructive determination of bolt length,anchoring length,and bolt body force is described.This addresses the problems of low accuracy,limited number of data,and untimely warning signs encountered with existing test methods.Numerical simulations of the bolt,resin,and rock system show that the length accuracy when using the velocity wave is lower than when using the acceleration wave.It is accepted practice to use the acceleration wave for length tests because of improved signal to noise ratios of the waveforms.Laboratory and in situ underground tests showed that the precision of the measurements meets field requirements.Using this method the anchor properties of each single bolt and,thus,the safety of the entire roadway support may be evaluated.
基金Projects(50934006, 50904079) supported by the National Natural Science Foundation of China Project(2010CB732004) supported by the National Basic Research Program of China
文摘A simplified method was proposed for the design of concrete lining in underground rock cavern/tunnel against shock loading. The loading may result from the detonation of explosives on ground surface or ground penetration projectiles exploding adjacent to the cavern/tunnel. The resulting problem necessitates the solution of the dynamics of a beam loaded by a transient pressure uniformly distributed over the span. According to mechanical characteristics of the system with rock bolt and shotcrete, a dynamic support design method based on equivalent single degree of freedom (SDOF) was put forward. The SDOF method was applied to obtaining the maximum displacement at the mid-span of the beam, which is often the controlling factor in the blast-resistant design. In the formulation of the problem, the proposed method combines the phenomena of spalling and structural dynamics theory. An example is provided to demonstrate the applicability of this simplified method.
文摘The basic characteristics of the soft rock roadway under the dynamic pressure are analyzed. At the same time, the three fundamental approaches for controlling the surrounding rock are proposed, which are improving the surrounding rock strength, lowering the rock mass stress and selecting the reasonable supporting technology. The research results are elucidated, including the distribution of the surrounding rock plastic zone, the movement and damage of the surrounding rock under the dynamic pressure, controlling the floor heave through reinforcing the roadway walls and corners, the new route to develop the roadway metal supporting technique, the key theory and technique for the bolt supporting in the coal roadway, the performance and prospect of the ZKD high water content quick setting material, and so on. Finally, some personally views are put forward about the roadway metal supporting, bolt supporting, new material and the stress relief under the high stress condition.