Ni supported on bentonite was prepared by the impregnation method with different nickel contents, applied to the hydrogenation of nitrobenzene to aniline in a fixed-bed reactor, and it was characterized by X-ray diffr...Ni supported on bentonite was prepared by the impregnation method with different nickel contents, applied to the hydrogenation of nitrobenzene to aniline in a fixed-bed reactor, and it was characterized by X-ray diffraction(XRD), H2-temperature programmed reduction(H2-TPR), and X-ray photoelectron spectrometry(XPS). The results showed that Ni/bentonite catalyst with 20 wt% nickel content provided a higher conversion of nitrobenzene and selectivity of aniline compared to other catalysts. NiO was the precursor of the active component of the catalyst, and the small crystallite size as well as the highly dispersed NiO on the Ni/bentonite-20 catalyst, contributed to the catalytic performance. The hydrogenation of nitrobenzene was carried out at 300℃ with a H_2 gaseous hourly space velocity of 4800 ml·(g cat)^-1·h^-1and a nitrobenzene liquid hourly space velocity of4.8 ml·(g cat)^-1·h^-1 over Ni/bentonite-20. A 95.7% nitrobenzene conversion and 98.8% aniline selectivity were obtained. While the nitrobenzene liquid hourly space velocity was 4.8 ml·(g cat)^-1·h^-1, the yield of aniline was more than 95.0% during a 10-hour reaction.展开更多
Novel MgCl2-supported Ziegler-Natta (Z-N) catalysts prepared using a new one-pot ball milling method can effectively control the amounts of Ti-loading in the catalysts. Complex GPC data on polypropylene synthesized by...Novel MgCl2-supported Ziegler-Natta (Z-N) catalysts prepared using a new one-pot ball milling method can effectively control the amounts of Ti-loading in the catalysts. Complex GPC data on polypropylene synthesized by these novel catalysts were analyzed using the method of fitting the molecular weight distribution (MWD) curves with a multiple Flory-Schulz function. It was found that multiple active centers exist in these novel catalysts. Detailed study of the effects of the Ti-loadings in the catalysts on the distribution of the active centers showed that the Ti-loadings in the novel MgCl2-supported Z-N catalysts might affect the proportion of each type of active centers; and might be the main factor responsible for the effect of the Ti-loadings on the microstructure, the molecular weight and molecular weight distribution width of the resultant polymer, the catalytic activity and polymerization kinetics.展开更多
The two-step nano-scale self-assembly technique and the framework structure mechanism for forming mesoporous supports were employed for preparing Al2O3-TiO2 complex supports with large pore volume that were applied fo...The two-step nano-scale self-assembly technique and the framework structure mechanism for forming mesoporous supports were employed for preparing Al2O3-TiO2 complex supports with large pore volume that were applied for manufacturing the resid hydrotreating catalysts. The influence of different TiO2 contents and calcination temperatures on specific surface area, pore volume and pore size distribution of complex supports was studied. TEM and SEM were employed to characterize the Al2O3-TiO2 complex supports. Test results revealed that the specific surface area of Al2O3-TiO2 complex supports was the largest at a TiO2 mass fraction of 20%, and when the calcination temperature was in the range between 300 ℃ to 700 ℃, the pore distribution of the complex support was stable. Characterization of the complex support by TEM and SEM demonstrated that TiO2 was homo- geneously distributed in the complex support, which was in favor of carrying active components. The Al2O3-TiO2 complex supports can function as the best catalyst support for resid hydrotreating catalysts.展开更多
The human ether-a-go-go related gene (hERG) channel is responsible for the repolarization during the action potential, and blockage of that may result in severe cardiotoxicity and sudden death. In this study, a data...The human ether-a-go-go related gene (hERG) channel is responsible for the repolarization during the action potential, and blockage of that may result in severe cardiotoxicity and sudden death. In this study, a dataset containing 1969 compounds was compiled from literature and FDA-approved drugs. Using a support vector machine (SVM), two groups of computational models were built to distinguish whether a compound is a blocker or non-blocker of hERG potassium ion channel. These mod- els fit generally satisfactory. The 100 models built with MACCS fingerprints (Model Group A) showed an average accuracy of 90% and an average matthews correlation coefficient (MCC) value of 0.77 on the test sets. The 100 models built with selected MOE descriptors (Model Group B) showed an average accuracy of 89% and an average MCC value of 0.74 on the test sets. Molecular hydrophobicity and lipophilicity were found to be very important factors which lead to block the hERG potassium ion channel. Some other molecular properties such as electrostatic properties, features based on van der Waals surface area, the number of rigid bonds and molecular surface rugosity also played important roles in blocking bERG potassium ion channel.展开更多
基金Supported by the National Natural Science Foundation of China(21566005,21425627)Natural Science Foundation of Guangxi province(2014GXNSFAA118049)+1 种基金the Open Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2013K011)the Patent Project of Colleges and Universities of Guangxi Zhuang Autonomous Region(KY2015ZL001)
文摘Ni supported on bentonite was prepared by the impregnation method with different nickel contents, applied to the hydrogenation of nitrobenzene to aniline in a fixed-bed reactor, and it was characterized by X-ray diffraction(XRD), H2-temperature programmed reduction(H2-TPR), and X-ray photoelectron spectrometry(XPS). The results showed that Ni/bentonite catalyst with 20 wt% nickel content provided a higher conversion of nitrobenzene and selectivity of aniline compared to other catalysts. NiO was the precursor of the active component of the catalyst, and the small crystallite size as well as the highly dispersed NiO on the Ni/bentonite-20 catalyst, contributed to the catalytic performance. The hydrogenation of nitrobenzene was carried out at 300℃ with a H_2 gaseous hourly space velocity of 4800 ml·(g cat)^-1·h^-1and a nitrobenzene liquid hourly space velocity of4.8 ml·(g cat)^-1·h^-1 over Ni/bentonite-20. A 95.7% nitrobenzene conversion and 98.8% aniline selectivity were obtained. While the nitrobenzene liquid hourly space velocity was 4.8 ml·(g cat)^-1·h^-1, the yield of aniline was more than 95.0% during a 10-hour reaction.
基金Project supported by the National Natural Science Foundation ofChina (No. 20172045) Science and Technology Plan Fund of Zhe-jiang Province (No. 001101116) and Foundation for Doctors ofNingbo City (No. 2003A62012) China
文摘Novel MgCl2-supported Ziegler-Natta (Z-N) catalysts prepared using a new one-pot ball milling method can effectively control the amounts of Ti-loading in the catalysts. Complex GPC data on polypropylene synthesized by these novel catalysts were analyzed using the method of fitting the molecular weight distribution (MWD) curves with a multiple Flory-Schulz function. It was found that multiple active centers exist in these novel catalysts. Detailed study of the effects of the Ti-loadings in the catalysts on the distribution of the active centers showed that the Ti-loadings in the novel MgCl2-supported Z-N catalysts might affect the proportion of each type of active centers; and might be the main factor responsible for the effect of the Ti-loadings on the microstructure, the molecular weight and molecular weight distribution width of the resultant polymer, the catalytic activity and polymerization kinetics.
文摘The two-step nano-scale self-assembly technique and the framework structure mechanism for forming mesoporous supports were employed for preparing Al2O3-TiO2 complex supports with large pore volume that were applied for manufacturing the resid hydrotreating catalysts. The influence of different TiO2 contents and calcination temperatures on specific surface area, pore volume and pore size distribution of complex supports was studied. TEM and SEM were employed to characterize the Al2O3-TiO2 complex supports. Test results revealed that the specific surface area of Al2O3-TiO2 complex supports was the largest at a TiO2 mass fraction of 20%, and when the calcination temperature was in the range between 300 ℃ to 700 ℃, the pore distribution of the complex support was stable. Characterization of the complex support by TEM and SEM demonstrated that TiO2 was homo- geneously distributed in the complex support, which was in favor of carrying active components. The Al2O3-TiO2 complex supports can function as the best catalyst support for resid hydrotreating catalysts.
基金supported by the National Natural Science Foundation of China(20975011)"Chemical Grid Project"of Beijing University of Chemical Technology
文摘The human ether-a-go-go related gene (hERG) channel is responsible for the repolarization during the action potential, and blockage of that may result in severe cardiotoxicity and sudden death. In this study, a dataset containing 1969 compounds was compiled from literature and FDA-approved drugs. Using a support vector machine (SVM), two groups of computational models were built to distinguish whether a compound is a blocker or non-blocker of hERG potassium ion channel. These mod- els fit generally satisfactory. The 100 models built with MACCS fingerprints (Model Group A) showed an average accuracy of 90% and an average matthews correlation coefficient (MCC) value of 0.77 on the test sets. The 100 models built with selected MOE descriptors (Model Group B) showed an average accuracy of 89% and an average MCC value of 0.74 on the test sets. Molecular hydrophobicity and lipophilicity were found to be very important factors which lead to block the hERG potassium ion channel. Some other molecular properties such as electrostatic properties, features based on van der Waals surface area, the number of rigid bonds and molecular surface rugosity also played important roles in blocking bERG potassium ion channel.