Based on the monitoring and discovery service 4 (MDS4) model, a monitoring model for a data grid which supports reliable storage and intrusion tolerance is designed. The load characteristics and indicators of comput...Based on the monitoring and discovery service 4 (MDS4) model, a monitoring model for a data grid which supports reliable storage and intrusion tolerance is designed. The load characteristics and indicators of computing resources in the monitoring model are analyzed. Then, a time-series autoregressive prediction model is devised. And an autoregressive support vector regression( ARSVR) monitoring method is put forward to predict the node load of the data grid. Finally, a model for historical observations sequences is set up using the autoregressive (AR) model and the model order is determined. The support vector regression(SVR) model is trained using historical data and the regression function is obtained. Simulation results show that the ARSVR method can effectively predict the node load.展开更多
The comprehensive nonlinear flow behaviors of a ductile alloy play a significant role in the numerical analysis of its forming process. The accurate characterization of as-forged Ti-13 Nb-13 Zr alloy was conducted by ...The comprehensive nonlinear flow behaviors of a ductile alloy play a significant role in the numerical analysis of its forming process. The accurate characterization of as-forged Ti-13 Nb-13 Zr alloy was conducted by an improved intelligent algorithm, GA-SVR, the combination of genetic algorithm(GA) and support vector regression(SVR). The GA-SVR model learns from a training dataset and then is verified by a test dataset. As for the generalization ability of the solved GA-SVR model, no matter in β phase temperature range or(α+β) phase temperature range, the correlation coefficient R-values are always larger than 0.9999, and the AARE-values are always lower than 0.18%. The solved GA-SVR model accurately tracks the highly-nonlinear flow behaviors of Ti-13 Nb-13 Zr alloy. The stress-strain data expanded by this model are input into finite element solver, and the computation accuracy is improved.展开更多
The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling...The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable.展开更多
Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently i...Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in applica-tion for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diag-nosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee East-man process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application.展开更多
The wear behavior of AZ91 alloy was investigated by considering different parameters,such as load(10−50 N),sliding speed(160−220 mm/s)and sliding distance(250−1000 m).It was found that wear volume loss increased as lo...The wear behavior of AZ91 alloy was investigated by considering different parameters,such as load(10−50 N),sliding speed(160−220 mm/s)and sliding distance(250−1000 m).It was found that wear volume loss increased as load increased for all sliding distances and some sliding speeds.For sliding speed of 220 mm/s and sliding distance of 1000 m,the wear volume losses under loads of 10,20,30,40 and 50 N were calculated to be 15.0,19.0,24.3,33.9 and 37.4 mm3,respectively.Worn surfaces show that abrasion and oxidation were present at a load of 10 N,which changes into delamination at a load of 50 N.ANOVA results show that the contributions of load,sliding distance and sliding speed were 12.99%,83.04%and 3.97%,respectively.The artificial neural networks(ANN),support vector regressor(SVR)and random forest(RF)methods were applied for the prediction of wear volume loss of AZ91 alloy.The correlation coefficient(R2)values of SVR,RF and ANN for the test were 0.9245,0.9800 and 0.9845,respectively.Thus,the ANN model has promising results for the prediction of wear performance of AZ91 alloy.展开更多
Support vector machine(SVM) has shown great potential in pattern recognition and regressive estima-tion.Due to the industrial development demands,such as the fermentation process modeling,improving the training perfor...Support vector machine(SVM) has shown great potential in pattern recognition and regressive estima-tion.Due to the industrial development demands,such as the fermentation process modeling,improving the training performance on increasingly large sample sets is an important problem.However,solving a large optimization problem is computationally intensive and memory intensive.In this paper,a geometric interpretation of SVM re-gression(SVR) is derived,and μ-SVM is extended for both L1-norm and L2-norm penalty SVR.Further,Gilbert al-gorithm,a well-known geometric algorithm,is modified to solve SVR problems.Theoretical analysis indicates that the presented SVR training geometric algorithms have the same convergence and almost identical cost of computa-tion as their corresponding algorithms for SVM classification.Experimental results show that the geometric meth-ods are more efficient than conventional methods using quadratic programming and require much less memory.展开更多
Transceiver-free object localization can localize target through using Radio Frequency(RF) technologies without carrying any device, which attracts many researchers' attentions. Most traditional technologies usual...Transceiver-free object localization can localize target through using Radio Frequency(RF) technologies without carrying any device, which attracts many researchers' attentions. Most traditional technologies usually first deploy a number of reference nodes which are able to communicate with each other, then select only some wireless links, whose signals are affected the most by the transceiver-free target, to estimate the target position. However, such traditional technologies adopt an ideal model for the target, the other link information and environment interference behavior are not considered comprehensively. In order to overcome this drawback, we propose a method which is able to precisely estimate the transceiver-free target position. It not only can leverage more link information, but also take environmental interference into account. Two algorithms are proposed in our system, one is Best K-Nearest Neighbor(KNN) algorithm, the other is Support Vector Regression(SVR) algorithm. Our experiments are based on Telos B sensor nodes and performed in different complex lab areas which have many different furniture and equipment. The experiment results show that the average localization error is round 1.1m. Compared with traditional methods, the localization accuracy is increased nearly two times.展开更多
Duplex NiP/TiN coatings consisting of the electroless intermediate layers and the physical vapor deposition(PVD) top layers were fabricated on the AA6061 aluminum alloy in order to enhance the load bearing capacity. T...Duplex NiP/TiN coatings consisting of the electroless intermediate layers and the physical vapor deposition(PVD) top layers were fabricated on the AA6061 aluminum alloy in order to enhance the load bearing capacity. The main objective of this study was to model the load bearing based on the thickness, adhesion and elastic modulus of the coatings. For this purpose, partial least square(PLS) and support vector regression(SVR) approaches were employed.The results showed that both models had an acceptable performance;however, the PLS model outperformed SVR. The correlation coefficients between thickness, adhesion and elastic modulus with load bearing were 0.841, 0.8092 and 0.7657, respectively;so, thickness had the greatest effect on the load bearing capacity. The composition and structure of the samples were evaluated using XRD and SEM. The load capacity of the coated samples was also discussed based on the wear and adhesion evaluations. Dry sliding wear tests, under a load of 2 N and a sliding distance of 100 m,demonstrated the complete destruction of the coated specimens with low load capacity. The samples with high load capacity showed not only a superior tribological performance, but also a remarkable adhesion according to the Rockwell superficial hardness test.展开更多
A quantitative assessment method is proposed to sense the specific effects of atmospheric icing conditions on flight safety. A six degree-of-freedom computational flight dynamics model is used to study the effects of ...A quantitative assessment method is proposed to sense the specific effects of atmospheric icing conditions on flight safety. A six degree-of-freedom computational flight dynamics model is used to study the effects of ice accretion on aircraft dynamics, and a pilot model is also involved. In order to investigate icing severity under different icing conditions, support vector regression is applied in establishing relationship between aircraft icing parameter and weather conditions. Considering the characteristics of aircraft icing accidents, a risk probability assessment model optimized by the particle swarm method is developed to measure the safety level. In particular, angle of attack is chosen as a critical parameter in this method. Results presented in the paper for a series of simulation show that this method captures the basic effects of atmospheric icing conditions on flight safety, which may provide an important theoretical reference for icing accidents avoidance.展开更多
To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm w...To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm which was defined as multi-output least squares support vector regression(MLSSVR) was put forward by adding samples' absolute errors in objective function and applied to flatness intelligent control.To solve the poor-precision problem of the control scheme based on effective matrix in flatness control,the predictive control was introduced into the control system and the effective matrix-predictive flatness control method was proposed by combining the merits of the two methods.Simulation experiment was conducted on 900HC reversible cold roll.The performance of effective matrix method and the effective matrix-predictive control method were compared,and the results demonstrate the validity of the effective matrix-predictive control method.展开更多
A hybrid intelligent method for evaluation of near optimal settings of friction welding process parameters of ductile iron was presented, The optimization of welding parameters was carried out in automatic cycle with ...A hybrid intelligent method for evaluation of near optimal settings of friction welding process parameters of ductile iron was presented, The optimization of welding parameters was carried out in automatic cycle with the use of support vector regression (SVR), genetic algorithm (GA) and imperialist competitive algorithm (ICA). The method suggested was used to determine welding process parameters by which the desired tensile strength was obtained in the friction welding of ductile iron. The highest tensile strength (TS) of 256.93 MPa was obtained using SVR plus GA method for the following friction welding parameters: heating force 40 kN, heating time 300 s and upsetting force 10.12 kN. The samples were welded by friction and subjected to the tensile strength test. The optimized values obtained by means of these hybrid techniques were compared with the experimental results. The application of hybrid intelligent methods allowed to increase the tensile strength joints from 211 to 258 MPa for the friction welder ZT-14 type.展开更多
An approach was proposed for optimizing beamforming that was based on Support Vector Regression (SVR). After studying the mathematical principal of the SVR algorithm and its primal cost function, the modified cost fun...An approach was proposed for optimizing beamforming that was based on Support Vector Regression (SVR). After studying the mathematical principal of the SVR algorithm and its primal cost function, the modified cost function was first applied to uniform array beamforming, and then the corresponding parameters of the beamforming were optimized. The framework of SVR uniform array beamforming was then established. Simulation results show that SVR beamforming can not only approximate the performance of conventional beamforming in the area without noise and with small data sets, but also improve the generalization ability and reduce the computation burden. Also, the side lobe level of both linear and circular arrays by the SVR algorithm is improved sharply through comparison with the conventional one. SVR beamforming is superior to the conventional method in both linear and circular arrays, under single source or double non-coherent sources.展开更多
基金The National High Technology Research and Development Program of China (863 Program) (No2007AA01Z404)
文摘Based on the monitoring and discovery service 4 (MDS4) model, a monitoring model for a data grid which supports reliable storage and intrusion tolerance is designed. The load characteristics and indicators of computing resources in the monitoring model are analyzed. Then, a time-series autoregressive prediction model is devised. And an autoregressive support vector regression( ARSVR) monitoring method is put forward to predict the node load of the data grid. Finally, a model for historical observations sequences is set up using the autoregressive (AR) model and the model order is determined. The support vector regression(SVR) model is trained using historical data and the regression function is obtained. Simulation results show that the ARSVR method can effectively predict the node load.
基金Project(cstc2018jcyjAX0459) supported by Chongqing Basic Research and Frontier Exploration Program,ChinaProjects(2019CDQYTM027,2019CDJGFCL003,2018CDPTCG0001-6,2019CDXYCL0031) supported by the Fundamental Research Funds for the Central Universities,China
文摘The comprehensive nonlinear flow behaviors of a ductile alloy play a significant role in the numerical analysis of its forming process. The accurate characterization of as-forged Ti-13 Nb-13 Zr alloy was conducted by an improved intelligent algorithm, GA-SVR, the combination of genetic algorithm(GA) and support vector regression(SVR). The GA-SVR model learns from a training dataset and then is verified by a test dataset. As for the generalization ability of the solved GA-SVR model, no matter in β phase temperature range or(α+β) phase temperature range, the correlation coefficient R-values are always larger than 0.9999, and the AARE-values are always lower than 0.18%. The solved GA-SVR model accurately tracks the highly-nonlinear flow behaviors of Ti-13 Nb-13 Zr alloy. The stress-strain data expanded by this model are input into finite element solver, and the computation accuracy is improved.
基金Supported by the National Creative Research Groups Science Foundation of China (60721062)the National Basic Research Program of China (2007CB714000)
文摘The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable.
基金Supported by China 973 Program (No.2002CB312200), the National Natural Science Foundation of China (No.60574019 and No.60474045), the Key Technologies R&D Program of Zhejiang Province (No.2005C21087) and the Academician Foundation of Zhejiang Province (No.2005A1001-13).
文摘Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in applica-tion for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diag-nosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee East-man process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application.
文摘The wear behavior of AZ91 alloy was investigated by considering different parameters,such as load(10−50 N),sliding speed(160−220 mm/s)and sliding distance(250−1000 m).It was found that wear volume loss increased as load increased for all sliding distances and some sliding speeds.For sliding speed of 220 mm/s and sliding distance of 1000 m,the wear volume losses under loads of 10,20,30,40 and 50 N were calculated to be 15.0,19.0,24.3,33.9 and 37.4 mm3,respectively.Worn surfaces show that abrasion and oxidation were present at a load of 10 N,which changes into delamination at a load of 50 N.ANOVA results show that the contributions of load,sliding distance and sliding speed were 12.99%,83.04%and 3.97%,respectively.The artificial neural networks(ANN),support vector regressor(SVR)and random forest(RF)methods were applied for the prediction of wear volume loss of AZ91 alloy.The correlation coefficient(R2)values of SVR,RF and ANN for the test were 0.9245,0.9800 and 0.9845,respectively.Thus,the ANN model has promising results for the prediction of wear performance of AZ91 alloy.
基金Supported by the National Natural Science Foundation of China (20476007,20676013)
文摘Support vector machine(SVM) has shown great potential in pattern recognition and regressive estima-tion.Due to the industrial development demands,such as the fermentation process modeling,improving the training performance on increasingly large sample sets is an important problem.However,solving a large optimization problem is computationally intensive and memory intensive.In this paper,a geometric interpretation of SVM re-gression(SVR) is derived,and μ-SVM is extended for both L1-norm and L2-norm penalty SVR.Further,Gilbert al-gorithm,a well-known geometric algorithm,is modified to solve SVR problems.Theoretical analysis indicates that the presented SVR training geometric algorithms have the same convergence and almost identical cost of computa-tion as their corresponding algorithms for SVM classification.Experimental results show that the geometric meth-ods are more efficient than conventional methods using quadratic programming and require much less memory.
基金supported by the National Natural Science Foundation of China (Grant No.61202377, U1301251)National High Technology Joint Research Program of China (Grant No.2015AA015305)+1 种基金Science and Technology Planning Project of Guangdong Province (Grant No.2013B090500055)Guangdong Natural Science Foundation (Grant No.2014A030313553)
文摘Transceiver-free object localization can localize target through using Radio Frequency(RF) technologies without carrying any device, which attracts many researchers' attentions. Most traditional technologies usually first deploy a number of reference nodes which are able to communicate with each other, then select only some wireless links, whose signals are affected the most by the transceiver-free target, to estimate the target position. However, such traditional technologies adopt an ideal model for the target, the other link information and environment interference behavior are not considered comprehensively. In order to overcome this drawback, we propose a method which is able to precisely estimate the transceiver-free target position. It not only can leverage more link information, but also take environmental interference into account. Two algorithms are proposed in our system, one is Best K-Nearest Neighbor(KNN) algorithm, the other is Support Vector Regression(SVR) algorithm. Our experiments are based on Telos B sensor nodes and performed in different complex lab areas which have many different furniture and equipment. The experiment results show that the average localization error is round 1.1m. Compared with traditional methods, the localization accuracy is increased nearly two times.
文摘Duplex NiP/TiN coatings consisting of the electroless intermediate layers and the physical vapor deposition(PVD) top layers were fabricated on the AA6061 aluminum alloy in order to enhance the load bearing capacity. The main objective of this study was to model the load bearing based on the thickness, adhesion and elastic modulus of the coatings. For this purpose, partial least square(PLS) and support vector regression(SVR) approaches were employed.The results showed that both models had an acceptable performance;however, the PLS model outperformed SVR. The correlation coefficients between thickness, adhesion and elastic modulus with load bearing were 0.841, 0.8092 and 0.7657, respectively;so, thickness had the greatest effect on the load bearing capacity. The composition and structure of the samples were evaluated using XRD and SEM. The load capacity of the coated samples was also discussed based on the wear and adhesion evaluations. Dry sliding wear tests, under a load of 2 N and a sliding distance of 100 m,demonstrated the complete destruction of the coated specimens with low load capacity. The samples with high load capacity showed not only a superior tribological performance, but also a remarkable adhesion according to the Rockwell superficial hardness test.
文摘A quantitative assessment method is proposed to sense the specific effects of atmospheric icing conditions on flight safety. A six degree-of-freedom computational flight dynamics model is used to study the effects of ice accretion on aircraft dynamics, and a pilot model is also involved. In order to investigate icing severity under different icing conditions, support vector regression is applied in establishing relationship between aircraft icing parameter and weather conditions. Considering the characteristics of aircraft icing accidents, a risk probability assessment model optimized by the particle swarm method is developed to measure the safety level. In particular, angle of attack is chosen as a critical parameter in this method. Results presented in the paper for a series of simulation show that this method captures the basic effects of atmospheric icing conditions on flight safety, which may provide an important theoretical reference for icing accidents avoidance.
基金Project(50675186) supported by the National Natural Science Foundation of China
文摘To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm which was defined as multi-output least squares support vector regression(MLSSVR) was put forward by adding samples' absolute errors in objective function and applied to flatness intelligent control.To solve the poor-precision problem of the control scheme based on effective matrix in flatness control,the predictive control was introduced into the control system and the effective matrix-predictive flatness control method was proposed by combining the merits of the two methods.Simulation experiment was conducted on 900HC reversible cold roll.The performance of effective matrix method and the effective matrix-predictive control method were compared,and the results demonstrate the validity of the effective matrix-predictive control method.
文摘A hybrid intelligent method for evaluation of near optimal settings of friction welding process parameters of ductile iron was presented, The optimization of welding parameters was carried out in automatic cycle with the use of support vector regression (SVR), genetic algorithm (GA) and imperialist competitive algorithm (ICA). The method suggested was used to determine welding process parameters by which the desired tensile strength was obtained in the friction welding of ductile iron. The highest tensile strength (TS) of 256.93 MPa was obtained using SVR plus GA method for the following friction welding parameters: heating force 40 kN, heating time 300 s and upsetting force 10.12 kN. The samples were welded by friction and subjected to the tensile strength test. The optimized values obtained by means of these hybrid techniques were compared with the experimental results. The application of hybrid intelligent methods allowed to increase the tensile strength joints from 211 to 258 MPa for the friction welder ZT-14 type.
基金the Foundation of Returned Scholar of Shaanxi Province(SLZ2008006)
文摘An approach was proposed for optimizing beamforming that was based on Support Vector Regression (SVR). After studying the mathematical principal of the SVR algorithm and its primal cost function, the modified cost function was first applied to uniform array beamforming, and then the corresponding parameters of the beamforming were optimized. The framework of SVR uniform array beamforming was then established. Simulation results show that SVR beamforming can not only approximate the performance of conventional beamforming in the area without noise and with small data sets, but also improve the generalization ability and reduce the computation burden. Also, the side lobe level of both linear and circular arrays by the SVR algorithm is improved sharply through comparison with the conventional one. SVR beamforming is superior to the conventional method in both linear and circular arrays, under single source or double non-coherent sources.