期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于粒子群优化算法支持向量回归预测法的大电网电压稳定在线评估方法 被引量:4
1
作者 李帅虎 赵翔 蒋昀宸 《湖南电力》 2022年第5期22-28,共7页
提出基于粒子群优化算法支持向量回归预测法(particle swarm optimization support vector regression,PSO-SVR)的大电网电压稳定在线评估方法,将传统基于深度神经网络(deep neural networks,DNN)模型的电压稳定评估方法改进为PSO优化过... 提出基于粒子群优化算法支持向量回归预测法(particle swarm optimization support vector regression,PSO-SVR)的大电网电压稳定在线评估方法,将传统基于深度神经网络(deep neural networks,DNN)模型的电压稳定评估方法改进为PSO优化过的SVR模型,对阻抗模裕度指标进行预测。该方法利用了SVR模型具有学习能力强、泛化错误率低的优点,在小样本的情况下也可以很好地学习到样本中的特征。同时克服SVR模型对于参数调节和函数选择非常敏感的问题,利用PSO算法对SVR模型的超参数进行优化选择,可以让SVR模型更好地学习到电网运行数据和阻抗模裕度值之间的非线性关系。最后,该方法在IEEE 118节点系统进行验证,并与基于DNN模型的评估方法进行比较,验证了其精度水平高于基于DNN模型的方法。 展开更多
关键词 电力系统 静态电压稳定 阻抗模裕度 粒子群优化算 支持向量回归预测法
下载PDF
基于动态权重优化的风电机组齿轮箱轴承温度预测模型
2
作者 吴九牛 翟广宇 +2 位作者 李德仓 高德成 蒋维栋 《轴承》 北大核心 2024年第9期100-107,共8页
为准确预测风电机组齿轮箱轴承的温度状态,结合灰色预测GM(1,N)模型、BP神经网络模型和支持向量回归模型,提出了一种动态权重优化的组合预测模型。通过对3种预测模型的理论分析选择了各自合理的模型结构,并用粒子群算法优化模型参数;预... 为准确预测风电机组齿轮箱轴承的温度状态,结合灰色预测GM(1,N)模型、BP神经网络模型和支持向量回归模型,提出了一种动态权重优化的组合预测模型。通过对3种预测模型的理论分析选择了各自合理的模型结构,并用粒子群算法优化模型参数;预处理齿轮箱轴承温度的原始数据后用指数平滑法确定各单一模型的动态权重系数,建立齿轮箱轴承温度的组合模型;通过滑动窗口法统计分析齿轮箱轴承预测温度的残差,判断齿轮箱轴承的运行状态。研究结果表明:组合模型的各项评价指标均优于单一预测模型,决定系数为0.9772,预测效果更加稳定准确,能够及时监测齿轮箱轴承温度的变化情况。 展开更多
关键词 滚动轴承 风力发电机组 温度 预测 灰色系统 神经网络 支持向量回归预测法
下载PDF
Load prediction of grid computing resources based on ARSVR method
3
作者 黄刚 王汝传 +1 位作者 解永娟 石小娟 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期451-455,共5页
Based on the monitoring and discovery service 4 (MDS4) model, a monitoring model for a data grid which supports reliable storage and intrusion tolerance is designed. The load characteristics and indicators of comput... Based on the monitoring and discovery service 4 (MDS4) model, a monitoring model for a data grid which supports reliable storage and intrusion tolerance is designed. The load characteristics and indicators of computing resources in the monitoring model are analyzed. Then, a time-series autoregressive prediction model is devised. And an autoregressive support vector regression( ARSVR) monitoring method is put forward to predict the node load of the data grid. Finally, a model for historical observations sequences is set up using the autoregressive (AR) model and the model order is determined. The support vector regression(SVR) model is trained using historical data and the regression function is obtained. Simulation results show that the ARSVR method can effectively predict the node load. 展开更多
关键词 GRID autoregressive support vector regression algorithm computing resource load prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部