随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ...随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。展开更多
为了在微弱故障征兆出现时能通过正常状态对异常进行辨识,针对通常动态系统故障状态样本缺乏的单值分类问题,提出混沌分形特征组合及支持向量数据域描述(support vector data description,SVDD)的动态系统振动异常辨识方法。该方法采用...为了在微弱故障征兆出现时能通过正常状态对异常进行辨识,针对通常动态系统故障状态样本缺乏的单值分类问题,提出混沌分形特征组合及支持向量数据域描述(support vector data description,SVDD)的动态系统振动异常辨识方法。该方法采用误诊和漏诊两种分类错误的SVDD接受者操作特征(receiver operating characteristic,ROC)曲线,通过分析振动混沌分形特征,选取最大Lyapunov指数和关联维数的最优组合,进而建立正常状态样本单值SVDD分类器,并对可提高分类精度的试验验证法优选核函数参数进行了探讨。试验及测试表明,SVDD-ROC方法避免了传统特征选取对具体故障类型样本的依赖性,选取的特征组合对正常和故障样本有较好的自聚类性,SVDD方法仅需要正常状态样本就能辨识异常状态,并且对未知故障也有较好的异常辨识能力。该研究可为动态系统异常状态提供建模与检测的理论基础和设计依据,有效预防突发事故,节约维修成本,提高动态系统的利用率,保障其安全运行,有效降低成本。展开更多
文摘随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。