期刊文献+
共找到4,160篇文章
< 1 2 208 >
每页显示 20 50 100
基于最小二乘孪生支持向量机的不确定数据学习算法 被引量:1
1
作者 刘锦能 肖燕珊 刘波 《广东工业大学学报》 CAS 2024年第1期79-85,共7页
孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首... 孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首先,对于每个实例,该方法都分配一个噪声向量来构建噪声信息。其次,将噪声向量结合到最小二乘孪生支持向量机,并在训练阶段得到优化。最后,采用一个2步循环迭代的启发式框架求解得到分类器和更新噪声向量。实验表明,跟其他对比方法比较,本方法采用噪声向量对不确定信息进行建模,并将孪生支持向量机的二次规划问题转化为线性方程,具有更好的分类精度和更高的训练效率。 展开更多
关键词 最小二乘 孪生支持向量 不平行平面学习 数据不确定性 分类
下载PDF
基于递归定量分析与多核学习支持向量机的玻璃纤维增强复合材料缺陷识别技术
2
作者 郭伟 王召巴 +1 位作者 陈友兴 吴其洲 《测试技术学报》 2024年第1期79-84,共6页
为了提高玻璃纤维增强复合材料(Glass Fiber Reinforced Polymer,GFRP)超声检测中缺陷识别技术的准确性,提出基于递归定量分析(Recurrence Quantitative Analysis,RQA)与多核学习支持向量机(MKLSVM)相结合的检测模型,以提高检测GFRP中... 为了提高玻璃纤维增强复合材料(Glass Fiber Reinforced Polymer,GFRP)超声检测中缺陷识别技术的准确性,提出基于递归定量分析(Recurrence Quantitative Analysis,RQA)与多核学习支持向量机(MKLSVM)相结合的检测模型,以提高检测GFRP中不同类型缺陷的能力。结果表明,该模型能够准确识别GFRP中的分层缺陷与夹杂缺陷,检测识别率达到92.92%,并且与基于离散小波变换(Discrete Wavelet Transform,DWT)和经验模态分解(Empirical Mode Decomposition,EMD)的MKLSVM检测模型的识别率相比,所提出的检测模型的识别率分别提高了7.5%和3.75%。 展开更多
关键词 玻璃纤维增强复合材料 超声检测 递归定量分析 多核学习支持向量
下载PDF
基于支持向量机(SVM)的古代玻璃制品分类
3
作者 高国云 王青芸 《赣南师范大学学报》 2024年第3期19-22,共4页
古代玻璃制品是古丝绸之路交易的商品之一,一般依据化学成分对玻璃制品进行分类.但是风化会改变玻璃制品化学成分的含量,从而影响玻璃制品类型的鉴别.本文尝试先预测风化前的化学成分以消除风化的影响,再采用灰色关联分析化学成分的关... 古代玻璃制品是古丝绸之路交易的商品之一,一般依据化学成分对玻璃制品进行分类.但是风化会改变玻璃制品化学成分的含量,从而影响玻璃制品类型的鉴别.本文尝试先预测风化前的化学成分以消除风化的影响,再采用灰色关联分析化学成分的关联关系以及差异,最后建立支持向量机(SVM)模型对古代玻璃制品进行分类. 展开更多
关键词 支持向量(svm) 系统聚类 灰色关联分析 古代玻璃 玻璃风化
下载PDF
弱监督场景下的支持向量机算法综述 被引量:2
4
作者 丁世飞 孙玉婷 +3 位作者 梁志贞 郭丽丽 张健 徐晓 《计算机学报》 EI CAS CSCD 北大核心 2024年第5期987-1009,共23页
支持向量机(Support Vector Machine,SVM)是一种建立在结构风险最小化原则上的统计学习方法,以其在非线性、小样本以及高维问题中的独特优势被广泛应用于图像识别、故障诊断以及文本分类等领域.但SVM是一种监督学习算法,它旨在利用大量... 支持向量机(Support Vector Machine,SVM)是一种建立在结构风险最小化原则上的统计学习方法,以其在非线性、小样本以及高维问题中的独特优势被广泛应用于图像识别、故障诊断以及文本分类等领域.但SVM是一种监督学习算法,它旨在利用大量的、唯一且明确的真值标记样本来训练学习器,在不完全监督、不确切监督以及多义监督等弱监督场景下难以取得较好的效果.本文首先阐述了弱监督场景的概念和SVM的相关理论,然后从弱监督场景角度出发,系统地梳理了目前SVM算法的研究现状和发展,包括基于半监督学习、多示例学习以及多标记学习的方法;其中基于半监督学习的方法根据数据假设可细分为基于聚类假设和基于流形假设的方法,基于多标记学习的方法根据解决方案可细分为基于示例水平空间、基于包水平空间以及基于嵌入空间的方法,基于多标记学习的方法根据处理思路可细分为基于问题转换和基于算法自适应的方法;随后,本文总结了部分代表性算法在公开数据集上的实验结果;最后,探讨并展望了未来可能的研究方向. 展开更多
关键词 弱监督场景 支持向量 半监督学习 多示例学习 多标记学习
下载PDF
基于斑马算法优化支持向量回归机模型预测页岩地层压力
5
作者 赵军 李勇 +2 位作者 文晓峰 徐文远 焦世祥 《岩性油气藏》 CAS CSCD 北大核心 2024年第6期12-22,共11页
针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模... 针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模型和常规地层压力预测方法结果进行了对比。研究结果表明:①ZOA-SVR模型以实测地层压力数据为目标变量,优选与陇东地区长7段页岩地层压力数据关联度达到0.70以上的深度、声波时差、密度、补偿中子、自然伽马、深侧向电阻率、泥质含量等7个参数作为输入特征参数,设置训练样本数为40,交叉验证折数为5,初始化斑马种群数量为10,最大迭代次数为70,对惩罚因子和核参数进行优化并建模,参数优化后拟合优度指标R2达到0.942,模型预测的地层压力数据在训练集和测试集上的绝对误差均低于1 MPa,预测测试集地层压力数据与实测压力数据的平均相对误差为2.42%。②ZOA-SVR模型在研究区长7段地层压力预测中优势明显,比基于粒子群优化算法、灰狼算法和蚁群算法的模型具有更好的参数调节及优化能力,R2分别提高了0.209,0.327,0.142;比等效深度法、Eaton法、有效应力法预测的地层压力精度更高,相对误差分别降低了32.53%,15.31%,5.91%。③ZOA-SVR模型在实际钻井中的应用结果显示,研究区长7段地层压力在垂向上分布较稳定,泥页岩段的地层压力高于砂岩段,地层压力系数主要为0.80~0.90,整体上属于异常低压环境,与实际地层情况相符。 展开更多
关键词 页岩 地层压力 斑马优化算法 支持向量回归 学习 测井曲线 长7段 三叠系 陇东地区
下载PDF
基于支持向量机的人体异常步态特征识别方法研究
6
作者 杨莉杰 《信息与电脑》 2024年第2期119-121,共3页
人体异常步态特征识别可分析个体的行走姿势和模式,推算身份信息及人体潜在的健康问题。基于此,文章系统阐述基于支持向量机(Support Vector Machine,SVM)的人体异常步态特征识别方法,分析SVM在处理步态数据方面的技术优势和实现过程,开... 人体异常步态特征识别可分析个体的行走姿势和模式,推算身份信息及人体潜在的健康问题。基于此,文章系统阐述基于支持向量机(Support Vector Machine,SVM)的人体异常步态特征识别方法,分析SVM在处理步态数据方面的技术优势和实现过程,开展CASIA-B和OUMVLP数据集的测试实验,验证该方法在步态识别上的准确性比传统反向传播(Back Propagation,BP)神经网络更高,为复杂行为识别研究提供了新视角。 展开更多
关键词 支持向量(svm) 人体异常步态 特征识别 模型构建
下载PDF
基于支持向量机的平稳期儿童哮喘诊断方法研究
7
作者 胡朝山 刘静 +4 位作者 张琪 范一强 李煜圣 吕娣 唐丽娟 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期114-120,共7页
哮喘是一种对儿童生活质量有重大影响的慢性呼吸系统疾病,它的及时预测和准确诊断对哮喘儿童的健康至关重要。但对处于哮喘平稳期的儿童而言,哮喘发作时儿童的呼吸音中不存在明显的喘鸣音等特征音,所以在听觉上处于哮喘平稳期儿童的呼... 哮喘是一种对儿童生活质量有重大影响的慢性呼吸系统疾病,它的及时预测和准确诊断对哮喘儿童的健康至关重要。但对处于哮喘平稳期的儿童而言,哮喘发作时儿童的呼吸音中不存在明显的喘鸣音等特征音,所以在听觉上处于哮喘平稳期儿童的呼吸音与健康儿童的呼吸音无明显区别,导致医护人员难以使用传统的听诊方法诊断哮喘。选用机器学习中的支持向量机算法(SVM)对儿童进行哮喘预测,研究结果表明,SVM在哮喘与健康儿童呼吸音的分类预测中表现出色,其对吸气相的预测准确率达到96.53%,而对呼气相的预测准确率达到91.66%。由此可见,SVM在儿童哮喘诊断中具有较好可行性,提高了儿童哮喘诊断的准确性和效率,为该领域提供了可靠的诊断工具。 展开更多
关键词 哮喘 预测 学习 支持向量
下载PDF
火箭发动机故障检测的快速增量单分类支持向量机算法
8
作者 张万旋 张箭 +2 位作者 卢哲 薛薇 张楠 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第2期115-122,共8页
为解决液体火箭发动机故障诊断正负样本不平均问题,以及实现发动机稳态工作段自适应故障检测,建立了基于快速增量单分类支持向量机的异常检测模型。采取特征工程方法,对传感器获得的多变量时间序列进行特征提取。通过增量学习方法,对单... 为解决液体火箭发动机故障诊断正负样本不平均问题,以及实现发动机稳态工作段自适应故障检测,建立了基于快速增量单分类支持向量机的异常检测模型。采取特征工程方法,对传感器获得的多变量时间序列进行特征提取。通过增量学习方法,对单分类支持向量机模型进行改进,并应用于液体火箭发动机异常检测,使单分类支持向量机检测模型具备对不同台次、不同工况的自适应性,提高了模型的计算速度。对多台次热试车数据的分析结果表明,该模型十分有效,训练速度快,具备实用价值。 展开更多
关键词 单分类支持向量 特征提取 自适应检测 增量学习 异常检测
下载PDF
基于自动编码器和支持向量机的飞机机动智能识别方法
9
作者 岳龙飞 杨任农 +3 位作者 杨文达 左家亮 刘会亮 许凌凯 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第2期210-217,共8页
飞机机动动作识别是空战意图识别和智能决策的基础。针对传统机动动作识别方法存在的高维数据分析和特征提取能力不足、识别准确率不高的问题,考虑到机动数据的高维性、时序性的特点,提出基于正则化自动编码器-支持向量机(RAE-SVM)的飞... 飞机机动动作识别是空战意图识别和智能决策的基础。针对传统机动动作识别方法存在的高维数据分析和特征提取能力不足、识别准确率不高的问题,考虑到机动数据的高维性、时序性的特点,提出基于正则化自动编码器-支持向量机(RAE-SVM)的飞机机动动作识别方法。依据机动动作数据变化规律和专家经验知识,构建了基于时间段数据特征的机动动作样本库;将无监督的自动编码器神经网络强大的特征提取能力和有监督的支持向量机优异的分类性能相结合,构建基于RAE-SVM的机动识别模型,采用机动动作样本库训练模型;通过引入正则化提高了RAE网络的泛化性能和预测准确率;最后与多种现有方法进行准确性与实时性对比,并选取空战机动动作数据进行实例验证。结果表明:所提方法识别准确率为92.75%,对一组机动数据识别仅需2 ms,满足实时性要求。因此,该方法可以快速准确地进行飞机机动动作识别,具有一定实用价值。 展开更多
关键词 动动作识别 正则化自动编码器 支持向量 特征提取 无监督学习
下载PDF
基于支持向量机的电力系统状态估计多类型数据异常检测
10
作者 郭嘉辉 侯月婷 +1 位作者 丁磊 金朝阳 《国外电子测量技术》 2024年第4期152-161,共10页
为了解决异常数据严重影响电力系统状态估计性能的问题,提出了一种基于支持向量机(SVM)的电力系统预测辅助状态估计(FASE)多类型数据异常检测方法。首先,针对传统FASE的预测准确率欠佳的问题,提出了基于极限学习机的FASE方法,并利用SVM... 为了解决异常数据严重影响电力系统状态估计性能的问题,提出了一种基于支持向量机(SVM)的电力系统预测辅助状态估计(FASE)多类型数据异常检测方法。首先,针对传统FASE的预测准确率欠佳的问题,提出了基于极限学习机的FASE方法,并利用SVM并基于预测数据、量测数据与估计值,实现了对坏数据、负荷突变和单相接地等多种类型的数据异常检测。其次,针对惩罚因子和核函数参数会影响分类精度的问题,提出采用灰狼算法对SVM参数进行优化,在兼顾计算速度的同时提高了数据异常检测的准确率。最后,在IEEE 33和丹麦DTU 7K 47节点主动配电网系统上进行仿真测试,所提方法在正常工况下提升26.08%与26.76%,计算速度提升46.05%,在数据异常情况下准确率综合提升32.04%与29.27%,结果表明,所提方法具备较强的通用性与实时性,可以有效地检测电力系统中各种类型的数据异常,并提高状态估计的性能。 展开更多
关键词 预测辅助状态估计 异常检测 极限学习 支持向量 灰狼算法
下载PDF
增量式稀疏密度加权孪生支持向量回归机
11
作者 丁伟杰 顾斌杰 潘丰 《计算机工程》 CAS CSCD 北大核心 2024年第7期123-132,共10页
密度加权孪生支持向量回归机(DWTSVR)是一种能够反映数据内在分布的回归算法,具有预测精度高和鲁棒性强等优点,然而其并不适用于训练样本以增量形式提供的场景。针对该问题,提出一种增量式稀疏密度加权孪生支持向量回归机(ISDWTSVR)。首... 密度加权孪生支持向量回归机(DWTSVR)是一种能够反映数据内在分布的回归算法,具有预测精度高和鲁棒性强等优点,然而其并不适用于训练样本以增量形式提供的场景。针对该问题,提出一种增量式稀疏密度加权孪生支持向量回归机(ISDWTSVR)。首先,辨别新增数据是否为异常样本,并赋予有效样本适当的权重,减小异常样本对模型泛化性能的影响;其次,结合矩阵降维与主成分分析思想筛选出原始核矩阵中的一组特征列向量基代替原特征,实现核矩阵列稀疏化,以获得稀疏解;接着,借助牛顿迭代法和增量学习策略对上一时刻的模型信息进行调整,实现模型的增量更新,同时结合矩阵求逆引理避免增量更新过程中直接求解逆矩阵,进一步加快训练速度;最后,在UCI基准数据集上进行仿真实验,并与现有代表性算法进行比较。实验结果表明,ISDWTSVR继承了DWTSVR的泛化性能,在大规模数据集Bike-Sharing上,新增一个样本模型更新平均CPU时间为5.13 s,较DWTSVR缩短了97.94%,有效地解决了模型必须从头开始重新训练的问题,适用于大规模数据集的在线学习。 展开更多
关键词 孪生支持向量回归 增量学习 稀疏化 密度加权 牛顿迭代法
下载PDF
基于支持向量机的风轮不平衡故障诊断方法研究
12
作者 曹沂风 《太阳能学报》 EI CAS CSCD 北大核心 2024年第8期613-620,共8页
针对风电机组风轮不平衡的识别与检测问题,提出一种基于多核融合支持向量机的风轮不平衡识别方法。首先,分析风轮不平衡的影响,提出一种基于变分模态分解(VMD)的信号分解与重构方法;其次,提出基于模糊熵的风轮不平衡特征提取方法,以高... 针对风电机组风轮不平衡的识别与检测问题,提出一种基于多核融合支持向量机的风轮不平衡识别方法。首先,分析风轮不平衡的影响,提出一种基于变分模态分解(VMD)的信号分解与重构方法;其次,提出基于模糊熵的风轮不平衡特征提取方法,以高斯核函数作为模糊函数,该方法具有较好的噪声鲁棒性和较低的数据长度依赖性;再次,提出基于多核融合支持向量机的风轮不平衡识别方法,融合不同特征和尺度的核函数组成核函数库,并选取最优核函数;最后,在不同湍流强度的仿真中建立交叉验证数据库对该方法进行验证,识别准确率在98%以上,证明该方法能有效识别风轮不平衡。 展开更多
关键词 风电 状态监测 学习 风轮不平衡 模糊熵 支持向量
下载PDF
基于支持向量机的多特征融合纤维分类算法
13
作者 叶飞 刘伟红 +5 位作者 杨娟亚 陈朝宏 王振华 霍政彤 瞿瑞德 汪小东 《毛纺科技》 CAS 北大核心 2024年第9期104-110,共7页
针对市面上常用的人工鉴别法无法对多种类纤维的识别分类的问题,提出了一种新的适用于多种类纤维图像识别分类的多特征融合纤维分类算法。首先提取10类纤维图像的灰度直方图、局部二值模式(LBP)、方向梯度直方图(HOG)、Hu不变矩和灰度... 针对市面上常用的人工鉴别法无法对多种类纤维的识别分类的问题,提出了一种新的适用于多种类纤维图像识别分类的多特征融合纤维分类算法。首先提取10类纤维图像的灰度直方图、局部二值模式(LBP)、方向梯度直方图(HOG)、Hu不变矩和灰度共生矩阵(GLCM)特征,然后再将上述特征加权融合得到一个新特征,利用SVM模型对其进行训练(8000根纤维)和测试(2000根纤维),从而得到最终识别准确率。结果表明:该算法的平均准确率为85.8%,其中腈纶、醋酯纤维以及锦纶3类纤维的特征非常明显准确率达到90%以上,同时较难分辨的羊毛、羊绒纤维准确率也达到88%左右。该算法较好的达到了识别效果,为快速准确识别纤维提供技术基础。 展开更多
关键词 纤维图像 支持向量 模式识别 学习
下载PDF
基于特征向量信息支持向量机的RC框架易损性曲线预测
14
作者 周宇 骆欢 《地震研究》 CSCD 北大核心 2024年第3期359-368,共10页
易损性曲线将结构破坏等级与地震动强度相关联,能够直观地反映结构破坏的概率,但在建立易损性曲线的过程中需要大量的结构非线性时程分析结果,因而计算效率不高。机器学习方法已被证明能较好地解决这一问题,但当训练数据的规模较大时,... 易损性曲线将结构破坏等级与地震动强度相关联,能够直观地反映结构破坏的概率,但在建立易损性曲线的过程中需要大量的结构非线性时程分析结果,因而计算效率不高。机器学习方法已被证明能较好地解决这一问题,但当训练数据的规模较大时,由于训练过程涉及求解大规模逆矩阵致使计算效率依然低下。为此,本文提出了一种特征向量信息支持向量机(EILS-SVM)的新方法克服此类方法的不足。在大规模数据集下,EILS-SVM能够筛选小规模子样本建立低秩核矩阵。这使得其训练过程只需求解小规模低秩矩阵的逆矩阵,进而极大提高计算效率。为了验证EILS-SVM的准确性和高效性,基于16500个钢筋混凝土(RC)框架在地震作用下的破坏数据,分别与支持向量机(LS-SVM)、随机森林、神经网络、线性判别分析(LDA)、贝叶斯作对比。结果表明,EILS-SVM能准确预测RC框架的易损性曲线,其计算效率最高能提升近27倍。 展开更多
关键词 钢筋混凝土框架 易损性曲线 特征向量 支持向量 学习
下载PDF
基于改进支持向量机的致密砂岩储层参数预测研究
15
作者 徐颖晋 庞振宇 《现代电子技术》 北大核心 2024年第5期132-138,共7页
致密砂岩储层的评价技术既是油气勘探开发的重点,也是难点。目前对致密砂岩储层的储层参数的预测与评价,依然采用传统的储层参数预测方法,结合测井曲线进行建模,用以对渗透率、孔隙度等参数进行拟合,主要运用的方法有经验公式、回归分析... 致密砂岩储层的评价技术既是油气勘探开发的重点,也是难点。目前对致密砂岩储层的储层参数的预测与评价,依然采用传统的储层参数预测方法,结合测井曲线进行建模,用以对渗透率、孔隙度等参数进行拟合,主要运用的方法有经验公式、回归分析等,其中大部分方法都是基于线性的,无法反映致密储层特有的沉积和成岩作用所导致的非均质性强的特点,无法揭示致密储层中测井曲线与储层参数之间的复杂非线性关系。针对此问题,提出在传统储层参数预测模型的基础上,对测井曲线与储层参数的非线性关系进行分析,挖掘更多现有测井信息,进行支持向量机储层参数预测模型的建构,并采用粒子群算法、头脑风暴算法、布谷鸟算法等三种支持向量机的改进优化算法对模型参数进行测试,筛选出最优的储层参数预测模型。将该模型应用于研究区储层参数预测评价中,有效提高了预测评价精度,为致密储层精细预测评价和非常规油气田的高效开发提供了有力的技术保障。 展开更多
关键词 储层参数 致密砂岩 测井曲线 学习 支持向量 粒子群算法
下载PDF
基于DGA和稀疏化支持向量机的设备异常诊断
16
作者 潘连荣 张福泉 +1 位作者 何井龙 杨加意 《计算机科学》 CSCD 北大核心 2024年第11期292-297,共6页
为了有效提高基于机器学习的设备异常诊断的精度和效率,提出了一种基于稀疏化支持向量机的故障诊断模型。首先,对异常诊断的原理和特征气体进行了分析,给出了故障类型与特征气体的关系;其次,从4个方面对数据进行预处理,包括清洗、归一... 为了有效提高基于机器学习的设备异常诊断的精度和效率,提出了一种基于稀疏化支持向量机的故障诊断模型。首先,对异常诊断的原理和特征气体进行了分析,给出了故障类型与特征气体的关系;其次,从4个方面对数据进行预处理,包括清洗、归一化、平衡和划分;然后,针对最小二乘支持向量机普遍存在的稀疏性缺乏问题,提出将数据样本映射到高维的核空间,并通过谱聚类算法对映射后的数据进行核空间距离聚类,以实现最小二乘支持向量机的数据预处理,从而实现其稀疏化;最后,在小样本数据集上进行了具体实验分析。结果表明,对于9种类型的故障,与其他基于不同类型支持向量机的诊断模型相比,所提诊断模型仅需11次迭代就可以获得最大适应度值,平均诊断准确率为96.67%,准确率和效率均更高。 展开更多
关键词 异常诊断 学习 最小二乘支持向量 油中溶解气体分析 稀疏化
下载PDF
基于Optuna框架的L_(p)范数约束下多核支持向量机在违约风险预测中的应用
17
作者 郑怡昕 王重仁 《现代电子技术》 北大核心 2024年第6期147-153,共7页
针对违约数据存在数据量大、维度多、不平衡及噪声大等缺点,提出一种改进的支持向量机方法,即基于Optuna框架的L_(p)范数约束的代价敏感的多核支持向量机(L_(p)-Optuna-SVM)。该方法采用成本矩阵对不同预测错误赋予不同数值,通过多核学... 针对违约数据存在数据量大、维度多、不平衡及噪声大等缺点,提出一种改进的支持向量机方法,即基于Optuna框架的L_(p)范数约束的代价敏感的多核支持向量机(L_(p)-Optuna-SVM)。该方法采用成本矩阵对不同预测错误赋予不同数值,通过多核学习引入多核混合核函数组合;同时采用Optuna优化框架对犯错成本、核函数的参数和权重实现了自动化的调优过程;还在核函数权重上引入L_(p)范数约束,以提高模型对噪声和异常数据的鲁棒性。最后,对4种常用的基础核函数组合的L_(p)-Optuna-SVM进行探讨,并与单核支持向量机以及K邻近法、逻辑回归、高斯贝叶斯进行对比。结果表明,在给定数据集上,L_(p)-Optuna-SVM在违约数据上的g-mean和AUC均高于其他算法,并且在加了不同方差的噪声数据集上,该算法整体依旧保持较好的鲁棒性。 展开更多
关键词 多核支持向量 Optuna优化框架 L_(p)范数约束 多核学习 不平衡数据集 违约风险预测
下载PDF
基于支持向量机的带式输送机智能控制系统设计
18
作者 王京涛 《信息记录材料》 2024年第10期115-117,共3页
带式输送机是工业生产中常见的机械设备,用于高效、连续地运输各种散装物料或成件产品。随着自动化和智能化技术的发展,对输送机系统的控制需求日益增加,特别是在操作特点和控制参数的精确调整方面。支持向量机(support vector machine,... 带式输送机是工业生产中常见的机械设备,用于高效、连续地运输各种散装物料或成件产品。随着自动化和智能化技术的发展,对输送机系统的控制需求日益增加,特别是在操作特点和控制参数的精确调整方面。支持向量机(support vector machine, SVM)是一种强大的机器学习方法,能够处理非线性问题并优化决策边界,使其在复杂系统的智能控制中显示出独特优势。本文详细介绍了基于支持向量机的带式输送机智能控制系统的设计与实现,包括硬件选型、外围器件整合以及软件系统的开发,重点讨论了如何通过智能控制技术优化输送机的操作效率和稳定性,并实现了面向操作特点的自动调节功能和人脸识别等安全特性的集成。 展开更多
关键词 支持向量(svm) 带式输送 智能控制
下载PDF
基于支持向量机的电声信号故障诊断方法
19
作者 张春 冯碧娟 《电声技术》 2024年第4期154-156,共3页
针对电力设备状态监测领域中变压器的故障诊断问题,以电声技术为核心,结合支持向量机方法,提出一种新的故障诊断方案。首先,以变压器为例,研究电气设备状态监测系统。其次,引入一种集成学习方法,利用支持向量机模型诊断故障。最后,在MAT... 针对电力设备状态监测领域中变压器的故障诊断问题,以电声技术为核心,结合支持向量机方法,提出一种新的故障诊断方案。首先,以变压器为例,研究电气设备状态监测系统。其次,引入一种集成学习方法,利用支持向量机模型诊断故障。最后,在MATLAB上进行仿真实验。实验结果表明,该方法能够有效识别正常状态和异常状态,具有较高的准确性、精确性及召回率。 展开更多
关键词 电声信号 状态监测 支持向量 集成学习
下载PDF
支持向量机(SVM)主动学习方法研究与应用 被引量:51
20
作者 张健沛 徐华 《计算机应用》 CSCD 北大核心 2004年第1期1-3,共3页
文中介绍了一种用SVM进行主动学习的方法 ,解决在某些机器学习问题中 ,训练样本获取代价过大带来的问题。实验表明 ,该方法与普通SVM方法相比 ,在保证SVM分类器性能的前提下 ,可有效减少学习所需的样本数量。最后设计了一个基于该思想... 文中介绍了一种用SVM进行主动学习的方法 ,解决在某些机器学习问题中 ,训练样本获取代价过大带来的问题。实验表明 ,该方法与普通SVM方法相比 ,在保证SVM分类器性能的前提下 ,可有效减少学习所需的样本数量。最后设计了一个基于该思想的邮件过滤器模型 ,依据该模型设计的邮件过滤器将有实时监控、自动更新邮件过滤模块的能力。 展开更多
关键词 支持向量 主动学习 文本分类 邮件过滤
下载PDF
上一页 1 2 208 下一页 到第
使用帮助 返回顶部