期刊文献+
共找到377篇文章
< 1 2 19 >
每页显示 20 50 100
基于支持向量机的人体异常步态特征识别方法研究
1
作者 杨莉杰 《信息与电脑》 2024年第2期119-121,共3页
人体异常步态特征识别可分析个体的行走姿势和模式,推算身份信息及人体潜在的健康问题。基于此,文章系统阐述基于支持向量机(Support Vector Machine,SVM)的人体异常步态特征识别方法,分析SVM在处理步态数据方面的技术优势和实现过程,开... 人体异常步态特征识别可分析个体的行走姿势和模式,推算身份信息及人体潜在的健康问题。基于此,文章系统阐述基于支持向量机(Support Vector Machine,SVM)的人体异常步态特征识别方法,分析SVM在处理步态数据方面的技术优势和实现过程,开展CASIA-B和OUMVLP数据集的测试实验,验证该方法在步态识别上的准确性比传统反向传播(Back Propagation,BP)神经网络更高,为复杂行为识别研究提供了新视角。 展开更多
关键词 支持向量(svm) 人体异常 特征识别 模型构建
下载PDF
基于粒子群优化-支持向量机方法的下肢肌电信号步态识别 被引量:20
2
作者 高发荣 王佳佳 +2 位作者 席旭刚 佘青山 罗志增 《电子与信息学报》 EI CSCD 北大核心 2015年第5期1154-1159,共6页
为提高下肢表面肌电信号步态识别的准确性和实时性,该文提出一种基于粒子群优化(PSO)算法优化支持向量机(SVM)的模式识别方法。首先对消噪后的肌电信号提取积分肌电值和方差作为特征样本,然后利用PSO算法优化SVM的惩罚参数和核函数参数... 为提高下肢表面肌电信号步态识别的准确性和实时性,该文提出一种基于粒子群优化(PSO)算法优化支持向量机(SVM)的模式识别方法。首先对消噪后的肌电信号提取积分肌电值和方差作为特征样本,然后利用PSO算法优化SVM的惩罚参数和核函数参数,最后利用步态动作的肌电信号样本数据对构造的SVM分类器进行训练、测试。实验结果表明PSO-SVM分类器对下肢正常行走5个步态的识别率,明显高于未经参数优化的SVM分类器,优化后平均识别率达到97.8%,并兼顾了分类的准确性和自适应性。 展开更多
关键词 模式识别 分析 肌电信号 粒子群优化 支持向量
下载PDF
基于支持向量机的步态识别新方法 被引量:15
3
作者 薛召军 李佳 +1 位作者 明东 万柏坤 《天津大学学报》 EI CAS CSCD 北大核心 2007年第1期78-82,共5页
为了能更好地提取步态识别参量,克服目前常用步态识别算法的不足,提出了基于频域特征提取与支持向量机(SVM)识别的新方法.首先提取下肢关节点的两维空间运动数据并进行离散傅里叶变换,然后在频域进行窗口滤波,提取中间频段的幅... 为了能更好地提取步态识别参量,克服目前常用步态识别算法的不足,提出了基于频域特征提取与支持向量机(SVM)识别的新方法.首先提取下肢关节点的两维空间运动数据并进行离散傅里叶变换,然后在频域进行窗口滤波,提取中间频段的幅值和相位,以此作为步态特征识别量输入至SVM进行分类识别.使用中国科学院自动化研究所的步态数据库,分别以SVM和人工神经网络(ANN)进行识别,其正确识别率分别为84%-93%和77%-88%,表明本文的新算法具有更好的识别性能. 展开更多
关键词 支持向量 识别 傅里叶变换 特征提取
下载PDF
基于小波变换和支持向量机的步态识别算法 被引量:8
4
作者 叶波 文玉梅 《中国图象图形学报》 CSCD 北大核心 2007年第6期1055-1063,共9页
为了快速准确地进行人体运动步态识别,基于运动人体的轮廓宽度特征,提出了一种新的步态识别算法。该算法首先对每个序列进行运动轮廓抽取,同时从3个方向(水平、垂直、斜向)对时变的2维轮廓进行投影扫描,并分别转换为对应的特征向量;然... 为了快速准确地进行人体运动步态识别,基于运动人体的轮廓宽度特征,提出了一种新的步态识别算法。该算法首先对每个序列进行运动轮廓抽取,同时从3个方向(水平、垂直、斜向)对时变的2维轮廓进行投影扫描,并分别转换为对应的特征向量;然后通过对级联的特征向量进行离散正交小波变换来提取低维步态特征,并抑制噪声;在此基础上采用支持向量机训练步态分类器组,最后用支持向量机组进行步态识别。在一组30人构成的步态数据库中进行的实验结果表明,该算法具备快速、稳健的特征,识别率达到91%,初步具备了实际应用的价值。 展开更多
关键词 生物测量 识别 轮廓投影 离散小波变换 支持向量
下载PDF
基于模糊支持向量机的步态识别 被引量:12
5
作者 路远 《计算机工程》 CAS CSCD 北大核心 2009年第21期189-191,共3页
提出基于模糊支持向量机(FSVM)的步态识别方法,以人体步态的宽度向量作为特征,探讨直接取值法和模糊C均值2种模糊隶属度确定方法对FSVM步态分类效果的影响。实验结果表明,模糊C均值法的识别率均略好于SVM,直接取值法的识别率甚至低于SVM... 提出基于模糊支持向量机(FSVM)的步态识别方法,以人体步态的宽度向量作为特征,探讨直接取值法和模糊C均值2种模糊隶属度确定方法对FSVM步态分类效果的影响。实验结果表明,模糊C均值法的识别率均略好于SVM,直接取值法的识别率甚至低于SVM,因此,选取正确的模糊隶属度确定方法是FSVM能否成功应用于步态识别的关键。 展开更多
关键词 识别 支持向量 模糊支持向量 模糊隶属度
下载PDF
基于集成学习支持向量机的步态识别 被引量:1
6
作者 梁竞敏 《计算机应用与软件》 CSCD 2010年第7期104-106,共3页
提出一种基于Bagging算法和SVM的步态识别方法。首先应用背景差分法分割出运动人体轮廓,然后将人体分为多个可变区域,并通过计算获取特征向量。采用SVM分类器进行分类识别,为了提高SVM的识别率,采用Bagging算法对分类结果进行分类集成,... 提出一种基于Bagging算法和SVM的步态识别方法。首先应用背景差分法分割出运动人体轮廓,然后将人体分为多个可变区域,并通过计算获取特征向量。采用SVM分类器进行分类识别,为了提高SVM的识别率,采用Bagging算法对分类结果进行分类集成,实验结果表明,该算法取得了很好地识别性能。 展开更多
关键词 识别 BAGGING算法 支持向量 集成学习
下载PDF
基于统一Hu和支持向量机的步态识别 被引量:2
7
作者 林敏 吴清江 《微计算机信息》 2010年第13期197-198,196,共3页
为了快速准确地进行人体运动步态识别,基于人体轮廓统一Hu矩的不变矩特征,提出了一种新的步态识别算法。该算法首先对每个序列进行运动轮廓提取,然后计算每个序列的不变矩,构成步态特征空间;在此基础上采用支持向量机训练步态,最后用支... 为了快速准确地进行人体运动步态识别,基于人体轮廓统一Hu矩的不变矩特征,提出了一种新的步态识别算法。该算法首先对每个序列进行运动轮廓提取,然后计算每个序列的不变矩,构成步态特征空间;在此基础上采用支持向量机训练步态,最后用支持向量机进行步态识别。实验结果表明,该算法具备快速、稳健的特征,取得了较好的识别率,初步具备了实际应用的价值。 展开更多
关键词 识别 HU不变矩 支持向量
下载PDF
基于粗糙集支持向量机的红外步态识别
8
作者 谭建辉 《计算机工程与设计》 CSCD 北大核心 2012年第4期1542-1546,共5页
为进一步提高红外步态识别精度,构建了一种多分类器融合识别新模型,在根据各单分类器识别输出值构建度量向量的基础上,进行基于粗糙集支持向量机的多分类器融合识别。通过在Matlab7.5平台利用中科院红外步态库进行识别仿真实验,获得识... 为进一步提高红外步态识别精度,构建了一种多分类器融合识别新模型,在根据各单分类器识别输出值构建度量向量的基础上,进行基于粗糙集支持向量机的多分类器融合识别。通过在Matlab7.5平台利用中科院红外步态库进行识别仿真实验,获得识别率和累积匹配分值的实验数据及对比结果。实验结果表明,基于粗糙集支持向量机的多分类器融合识别模型比单分类器在识别率方面有大幅度提高,识别性能理想,识别精度高。 展开更多
关键词 粗糙集 支持向量 红外 识别 多分类器融合
下载PDF
基于支持向量机的步态识别算法研究 被引量:2
9
作者 史黎黎 《无线电工程》 2013年第6期50-53,共4页
为了准确快速地进行运动人体的步态识别,提出了一种基于主分量分析(PCA)和统一Hu矩融合的步态识别算法。将人体髋关节以下作为感兴趣区域,对图像序列中运动人体的感兴趣区域进行了分割,并提取主分量外形特征,同时计算感兴趣区域的统一H... 为了准确快速地进行运动人体的步态识别,提出了一种基于主分量分析(PCA)和统一Hu矩融合的步态识别算法。将人体髋关节以下作为感兴趣区域,对图像序列中运动人体的感兴趣区域进行了分割,并提取主分量外形特征,同时计算感兴趣区域的统一Hu不变矩特征,将二者结合,构成步态序列的特征空间,采用支持向量机(SVM)分类器进行分类识别,通过MATLAB仿真实验验证了算法的有效性。实验结果表明,该算法识别速度快,具有较高的识别率。 展开更多
关键词 识别 特征融合 主分量分析 统一Hu矩 支持向量
下载PDF
基于SVM的偏瘫患者异常步态识别与临床康复辅助诊断系统 被引量:1
10
作者 王全坤 郭冰菁 +2 位作者 尤爱民 韩建海 刘庆祥 《计算机应用与软件》 北大核心 2023年第10期94-100,共7页
针对脑卒中偏瘫患者的异常步态识别与评估的问题,提出一种基于支持向量机(SVM)的步态分类方法,依据患者下肢行走过程中的连续运动数据对异常步态的细节特征描述,对偏瘫步态进行细分,辅助临床医师对脑卒中患者肢体运动功能异常进行诊断... 针对脑卒中偏瘫患者的异常步态识别与评估的问题,提出一种基于支持向量机(SVM)的步态分类方法,依据患者下肢行走过程中的连续运动数据对异常步态的细节特征描述,对偏瘫步态进行细分,辅助临床医师对脑卒中患者肢体运动功能异常进行诊断及康复疗效评定。构建穿戴式步态时空参数检测及虚拟现实康复训练系统,提出基于下肢关节角度信息的特征提取方法,建立运动信号与偏瘫步态间的映射关系。基于偏瘫患者在康复治疗中的临床实时步态时空数据,通过对比多种机器学习方法,采用多项式核函数的支持向量机的决策融合模型获得了90%异常步态识别平均准确率,在区分正常与异常步态的基础上,进一步验证了对划圈步态和膝过伸步态的正确诊断。 展开更多
关键词 脑卒中偏瘫 异常识别 时空参数 支持向量(svm) 临床辅助诊断
下载PDF
支持向量机在步态识别算法中的应用研究
11
作者 张恒 周杰 惠建新 《计算机仿真》 CSCD 北大核心 2011年第3期302-305,398,共5页
步态识别是图像处理领域的一个新兴热点。人行走姿态准确识别困难因素较多,由于步态数据是一种高维、小样本数据,传统识别方法不能检测前景与背景差异情况,导致识别正确率比较低。为了快速准确地进行步态识别,提出支持向量机的步态识别... 步态识别是图像处理领域的一个新兴热点。人行走姿态准确识别困难因素较多,由于步态数据是一种高维、小样本数据,传统识别方法不能检测前景与背景差异情况,导致识别正确率比较低。为了快速准确地进行步态识别,提出支持向量机的步态识别方法。方法首先根据步态图像中前景点与背景点的差值,自适应计算区分前景点与背景点的阈值,根据阈值对步态图像进行二值化,在特征提取阶段,采用水平、垂直和对角线3个方向提取步态信息,并通过小波变换进行特征维数约简,最后将小波变换提取维步态特征采用支持向量机学习得到步态识别结果。在中国科学院自动化所的CASIA步态数据库上进行了识别仿真,结果表明,方法的识别正确率有所提高,且识别的速度加快,是步态识别有效的方法,并具有广阔的应用前景。 展开更多
关键词 识别 小波变换 支持向量
下载PDF
基于支持向量机的人手姿态肌电模式识别与力检测 被引量:5
12
作者 杨大鹏 赵京东 +2 位作者 崔平远 姜力 刘宏 《高技术通讯》 EI CAS CSCD 北大核心 2010年第6期618-622,共5页
针对多自由度假手的肌电控制难题进行了人手多种姿态的模式分类以及握力检测的研究。基于支持向量机(SVM)算法,首先从6通道表面肌肤电信号中提取模式信息,对人手18种姿态进行了分类,然后验证了在3种抓取模式下从肌电信号中回归人手握力... 针对多自由度假手的肌电控制难题进行了人手多种姿态的模式分类以及握力检测的研究。基于支持向量机(SVM)算法,首先从6通道表面肌肤电信号中提取模式信息,对人手18种姿态进行了分类,然后验证了在3种抓取模式下从肌电信号中回归人手握力的方法的性能。实验结果表明,使用支持向量机能有效地识别出入手所处的姿态模式及施力的大小。结合肌电的模式识别以及握力回归算法,可以实现多自由度假手的随动及力控制,因此可大大提升假手控制的灵活性及功能性。 展开更多
关键词 肌电(EMG)控制 模式识别 支持向量(svm) 假手
下载PDF
一种小样本支持向量机控制器在两足机器人步态控制的研究 被引量:4
13
作者 王丽杨 刘治 +1 位作者 赵之光 章云 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第8期1133-1139,1144,共8页
神经网络等传统的机器学习方法是基于样本数目无穷大的经验风险最小化原则,这对非确定环境下有限样本的步态学习控制非常不利.针对两足机器人面临的非确定环境适应性难题,提出了一种基于支持向量机(SVM)的两足机器人步态控制方法,解决... 神经网络等传统的机器学习方法是基于样本数目无穷大的经验风险最小化原则,这对非确定环境下有限样本的步态学习控制非常不利.针对两足机器人面临的非确定环境适应性难题,提出了一种基于支持向量机(SVM)的两足机器人步态控制方法,解决了小样本条件下的步态学习控制问题.提出了一种基于混合核的步态回归方法,仿真研究表明了这种方法比全局核和局部核分别单独用于步态学习时有优越性.SVM以踝关节及髋关节的轨迹作为输入,相应的满足ZMP判据的上体轨迹作为输出,利用有限的理想步态样本对机器人上体轨迹与腿部轨迹之间的动态运动关系进行学习,然后将训练好的SVM置入机器人控制系统,从而增强了步态控制的鲁棒性,有利于实现两足机器人在非结构环境下的稳定步行.仿真结果表明了所提方法的优越性. 展开更多
关键词 两足器人 小样本 学习控制 支持向量
下载PDF
基于列质量向量和SVM的步态识别 被引量:8
14
作者 王开杰 杨天奇 《计算机工程与应用》 CSCD 北大核心 2015年第7期169-173,共5页
步态识别是根据人行走的方式来识别其身份,以其特有的优势作为一种身份识别手段。为了提高步态的识别率,提出了一种新方法,使用人体轮廓列质量向量表征特征信息,并使用支持向量机进行识别。根据人体轮廓的高度和宽度计算出步态周期,提... 步态识别是根据人行走的方式来识别其身份,以其特有的优势作为一种身份识别手段。为了提高步态的识别率,提出了一种新方法,使用人体轮廓列质量向量表征特征信息,并使用支持向量机进行识别。根据人体轮廓的高度和宽度计算出步态周期,提取每个步态轮廓列质量向量,最后采用支持向量机进行分类识别。为了验证所提出方法的有效性,在CASIA步态数据库上进行了充足的实验,验证了该方法具有较高的识别率。 展开更多
关键词 列质量向量 宽高比 周期 支持向量 识别
下载PDF
采用支持向量机评估老年人步态对称性的研究 被引量:8
15
作者 吴建宁 王珏 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第8期995-999,共5页
采用支持向量机(SVM)评估老年人步态的对称性.将鉴别老年人下肢左、右两侧的步态模式相似性问题转化为二分类问题,通过识别老年人下肢左、右两侧的步态模式,确定其两侧步态模式相似性的差异,判断其步态的对称性.采集24名健康老年人下肢... 采用支持向量机(SVM)评估老年人步态的对称性.将鉴别老年人下肢左、右两侧的步态模式相似性问题转化为二分类问题,通过识别老年人下肢左、右两侧的步态模式,确定其两侧步态模式相似性的差异,判断其步态的对称性.采集24名健康老年人下肢左、右两侧的步态数据,采用交叉验证方法评估SVM泛化能力,测试了多项式核、径向基核、线性核.结果表明,多项式核、径向基核的泛化能力优于线性核,基于多项式核的SVM识别左、右两侧老年人步态模式的分类正确率较高(88%),可有效地提取步态模式的非线性信息.SVM有望成为评估老年人步态对称性的一个有效的工具,有助于及早预防老年人跌倒和老年性疾病发生,提高老年人生活质量. 展开更多
关键词 分析 对称性 支持向量 老年人
下载PDF
基于模糊支持向量机的步态身份识别研究
16
作者 路远 吴清江 《福建电脑》 2009年第1期81-82,共2页
由于传统支持向量机本身一些固有的缺陷,众多的学者开始将模糊数学的思想引入支持向量机中,在传统支持向量机的基础上加入了"模糊隶属度"因子,从而构造出了一种新的分类器--模糊支持向量机。本文力图通过分析模糊支持向量机... 由于传统支持向量机本身一些固有的缺陷,众多的学者开始将模糊数学的思想引入支持向量机中,在传统支持向量机的基础上加入了"模糊隶属度"因子,从而构造出了一种新的分类器--模糊支持向量机。本文力图通过分析模糊支持向量机在语言识别方面已有的实验成果,探讨模糊支持向量机在步态识别中的可行性,从而期望模糊支持向量机在步态识别领域能够取得更好的分类效果。 展开更多
关键词 识别 支持向量 模糊支持向量 模糊隶属度
下载PDF
采用多核相关向量机的人体步态识别 被引量:8
17
作者 刘磊 杨鹏 刘作军 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第3期562-571,共10页
为进一步提升人体步态识别的准确率,参考人体步态特点,选择下肢表面肌电信号(SEMG)、髋关节角度、膝关节角度作为步态识别信息源,提出一种基于多核相关向量机(MKRVM)的人体步态识别方法.该方法以多源信息特征值作为多核相关向量机的输入... 为进一步提升人体步态识别的准确率,参考人体步态特点,选择下肢表面肌电信号(SEMG)、髋关节角度、膝关节角度作为步态识别信息源,提出一种基于多核相关向量机(MKRVM)的人体步态识别方法.该方法以多源信息特征值作为多核相关向量机的输入,通过实验对不同信号选取合适的核函数,利用萤火虫优化(GSO)算法确定核函数参数,输出为不同步态的概率.利用训练好的模型直接对新样本进行分类,将概率最高的步态模式作为识别结果.实验结果表明,该方法对于平地行走、上楼、下楼、上坡、下坡等步态的平均识别率为94.64%,优于单核支持向量机(SVM)等方法. 展开更多
关键词 下肢表面肌电信号(SEMG) 关节角度 多核学习(MKL) 多核相关向量(MKRVM) 识别 萤火虫优化(GSO)算法
下载PDF
构建基于小波熵的自训练半监督支持向量机分类模型评价老年人步态 被引量:4
18
作者 吴建宁 伍滨 《中国生物医学工程学报》 CAS CSCD 北大核心 2013年第5期588-594,共7页
研究应用半监督学习算法分析未标注步态数据评价老年人步态,提出基于小波熵的自训练半监督支持向量机步态分类模型,通过小波熵从未标注步态数据中选取为每次自训练步态分类模型所需最具信息量的标注样本,有效获取步态数据类别间和步态... 研究应用半监督学习算法分析未标注步态数据评价老年人步态,提出基于小波熵的自训练半监督支持向量机步态分类模型,通过小波熵从未标注步态数据中选取为每次自训练步态分类模型所需最具信息量的标注样本,有效获取步态数据类别间和步态数据内在的"有价值"的步态变异信息,提高步态分类器的泛化性能。首先采用10名老年人和10名青年人步态数据构建支持向量机分类模型,然后对120名不同年龄组未标注步态数据分类预测,依据小波熵选取样本数据,逐步添加更新步态样本训练集,自训练支持向量机分类模型。实验结果表明,本算法较准确鉴别青年和老年人步态模式(分类正确率90%),比基于有监督学习的支持向量机步态分类算法正确率提高近5%,有效改善支持向量机步态分类算法性能,有望为临床提供一个评价老年人步态的新方法。 展开更多
关键词 分析 半监督学习 支持向量 小波熵 老年人
下载PDF
基于支持向量机的步态分类方法 被引量:3
19
作者 吴建宁 王珏 《测试技术学报》 2006年第4期299-303,共5页
针对小样本步态数据引起的分类器泛化能力差的问题,提出了基于支持向量机的步态分类方法.采集了24名青年和24名老年受试者的步态数据,提取24个步态特征训练支持向量机,采用交叉验证方法评估分类器的泛化性能.结果表明,本文提出的方法能... 针对小样本步态数据引起的分类器泛化能力差的问题,提出了基于支持向量机的步态分类方法.采集了24名青年和24名老年受试者的步态数据,提取24个步态特征训练支持向量机,采用交叉验证方法评估分类器的泛化性能.结果表明,本文提出的方法能够有效地对小样本步态数据分类,并且具有良好的泛化性.不同的核函数对分类性能影响较小.与传统反向传播学习算法的神经网络分类器进行了比较,支持向量机分类性能明显优于传统反向传播学习算法的神经网络.支持向量机在步态分类中具有广泛的应用前景. 展开更多
关键词 支持向量 分类 特征提取 模式
下载PDF
基于足底压力与支持向量机的步态相位识别研究
20
作者 陈晓 倪洁 +1 位作者 马闯 钮建伟 《智能安全》 2022年第1期69-74,共6页
随着两足机器人、人工假肢技术以及为行走困难病人康复设计的康复训练机器人的发展,在线的步态相位识别方法越来越重要.本文提出的基于足底压力与支持向量机(SVM)的步态相位识别算法主要由五部分组成,即数据采集、数据预处理、特征提取... 随着两足机器人、人工假肢技术以及为行走困难病人康复设计的康复训练机器人的发展,在线的步态相位识别方法越来越重要.本文提出的基于足底压力与支持向量机(SVM)的步态相位识别算法主要由五部分组成,即数据采集、数据预处理、特征提取、训练分类器和分类识别.实验表明:该方法能够对运动中的步态相位进行准确的判断. 展开更多
关键词 相位识别 特征提取 支持向量 足底压力
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部