为了提高旋转机械设备故障诊断的准确率,提出一种基于广义正态分布优化(Generalized Normal Distribution Optimization,GNDO)的支持向量机(Support Vector Machine,SVM)算法。在SVM算法的基础上,使GNDO对其进行寻优求解,找到SVM算法的...为了提高旋转机械设备故障诊断的准确率,提出一种基于广义正态分布优化(Generalized Normal Distribution Optimization,GNDO)的支持向量机(Support Vector Machine,SVM)算法。在SVM算法的基础上,使GNDO对其进行寻优求解,找到SVM算法的最优参数组,以此推导出GNDO-SVM算法。结果表明,在电机轴承故障诊断中,GNDO-SVM算法相较于SVM算法的分类准确率提高了3.9个百分点,有着更好的有效性和准确性。展开更多
文摘为了提高旋转机械设备故障诊断的准确率,提出一种基于广义正态分布优化(Generalized Normal Distribution Optimization,GNDO)的支持向量机(Support Vector Machine,SVM)算法。在SVM算法的基础上,使GNDO对其进行寻优求解,找到SVM算法的最优参数组,以此推导出GNDO-SVM算法。结果表明,在电机轴承故障诊断中,GNDO-SVM算法相较于SVM算法的分类准确率提高了3.9个百分点,有着更好的有效性和准确性。