期刊文献+
共找到36,815篇文章
< 1 2 250 >
每页显示 20 50 100
基于泊松噪声和优化极限学习机的多因素混合学习方法及应用
1
作者 蒋锋 路畅 王辉 《统计与决策》 北大核心 2025年第1期52-57,共6页
针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适... 针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适应调整参数改进蛇优化算法;最后,运用MSO优化的极限学习机(ELM)对每个子序列进行预测并集成。为了验证CEEMDPN-MSO-ELM模型的有效性,采用龙源电力集团的风电功率数据进行超短期预测,实证结果表明,CEEMDPN算法能够加强风电功率序列的主频率部分并提高分解精度,MSO算法能够很好地平衡算法的寻优速度与收敛精度,从而有效提升ELM模型的预测性能,所提模型的预测精度和稳健性均优于其他对比模型。 展开更多
关键词 超短期风电功率预测 互补集合经验模态分解 蛇优化算法 极限学习
下载PDF
ZigBee技术和支持向量机下室内火灾自动报警系统
2
作者 邹峰 《现代电子技术》 北大核心 2025年第2期148-152,共5页
室内火灾报警系统只能基于少量传感器的数据进行判断,容易受到烟雾、温度等干扰,导致误判率较高。为此,基于ZigBee技术和支持向量机设计一种室内火灾自动报警系统。采用传感器节点采集室内烟雾浓度与温度信息,通过ZigBee路由设备将采集... 室内火灾报警系统只能基于少量传感器的数据进行判断,容易受到烟雾、温度等干扰,导致误判率较高。为此,基于ZigBee技术和支持向量机设计一种室内火灾自动报警系统。采用传感器节点采集室内烟雾浓度与温度信息,通过ZigBee路由设备将采集的信息转发至ZigBee协调器内。利用基于负载均衡的ZigBee网络多径路由算法建立信息传输路径,将ZigBee路由设备转发的信息传输至支持向量机处理模块内。使用支持向量机算法处理烟雾浓度与温度信息,获取高校室内火灾类型的发生概率,并与事先设置的判别阈值进行比较,当火灾发生概率大于阈值,自动报警模块会自动发出警报。实验结果表明:所设计系统火灾信息采集精度较高,无线网络生存周期长,具备较优的信息传输效果,且能够有效计算高校室内火灾类型发生概率并自动发出警报。 展开更多
关键词 ZIGBEE技术 支持向量 室内火灾 自动报警 协调器 信息传输 多径路由算法
下载PDF
基于支持向量机的起重机限位器故障识别
3
作者 张顺 吕正 +1 位作者 林辰 陈永玉 《起重运输机械》 2025年第1期72-77,共6页
起重机高度限位器作为保障起重机安全的重要部件,其质量好坏决定着起重机的运行安全。文中提出了基于支持向量机SVM(supportvectormachines)的起重机高度限位故障识别方法,利用主分量分析特征提取算法获取限位器故障信号特征,并结合支... 起重机高度限位器作为保障起重机安全的重要部件,其质量好坏决定着起重机的运行安全。文中提出了基于支持向量机SVM(supportvectormachines)的起重机高度限位故障识别方法,利用主分量分析特征提取算法获取限位器故障信号特征,并结合支持向量机算法对起重机限位器监测信号进行分类识别,获取实时监测限位器质量信号。研究表明,主分量分析特征提取算法可以有效降低限位器检测信号数据量,获取有效的限位器信号特征,并通过支持向量机算法可以有效识别起重机限位器故障信号,识别精度达到95%,显著提高了限位器故障的诊断效率和精度。 展开更多
关键词 起重 支持向量 主分量分析 高度限位器 故障识别
下载PDF
基于最小二乘孪生支持向量机的不确定数据学习算法 被引量:1
4
作者 刘锦能 肖燕珊 刘波 《广东工业大学学报》 CAS 2024年第1期79-85,共7页
孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首... 孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首先,对于每个实例,该方法都分配一个噪声向量来构建噪声信息。其次,将噪声向量结合到最小二乘孪生支持向量机,并在训练阶段得到优化。最后,采用一个2步循环迭代的启发式框架求解得到分类器和更新噪声向量。实验表明,跟其他对比方法比较,本方法采用噪声向量对不确定信息进行建模,并将孪生支持向量机的二次规划问题转化为线性方程,具有更好的分类精度和更高的训练效率。 展开更多
关键词 最小二乘 孪生支持向量 不平行平面学习 数据不确定性 分类
下载PDF
基于支持向量回归与极限学习机的高炉铁水温度预测 被引量:18
5
作者 王振阳 江德文 +3 位作者 王新东 张建良 刘征建 赵宝军 《工程科学学报》 EI CSCD 北大核心 2021年第4期569-576,共8页
选取某4000 m^(3)级别高炉2014年至2019年时间范围内的日平均数据,以铁水温度为目标函数,首先对铁水温度的特征参量进行线性与非线性相关性分析、特征选择与规范化处理,获取了显著影响铁水温度的正负相关性特征参量.在此基础上,基于支... 选取某4000 m^(3)级别高炉2014年至2019年时间范围内的日平均数据,以铁水温度为目标函数,首先对铁水温度的特征参量进行线性与非线性相关性分析、特征选择与规范化处理,获取了显著影响铁水温度的正负相关性特征参量.在此基础上,基于支持向量回归与极限学习机两种算法对铁水温度构建预测模型,模型均可对铁水温度实现有效预测,基于支持向量回归算法构建的预测模型较优,预测平均绝对误差为4.33℃,±10℃误差范围内的命中率为94.0%. 展开更多
关键词 大数据 学习 支持向量回归 极限学习 铁水温度
下载PDF
基于递归定量分析与多核学习支持向量机的玻璃纤维增强复合材料缺陷识别技术
6
作者 郭伟 王召巴 +1 位作者 陈友兴 吴其洲 《测试技术学报》 2024年第1期79-84,共6页
为了提高玻璃纤维增强复合材料(Glass Fiber Reinforced Polymer,GFRP)超声检测中缺陷识别技术的准确性,提出基于递归定量分析(Recurrence Quantitative Analysis,RQA)与多核学习支持向量机(MKLSVM)相结合的检测模型,以提高检测GFRP中... 为了提高玻璃纤维增强复合材料(Glass Fiber Reinforced Polymer,GFRP)超声检测中缺陷识别技术的准确性,提出基于递归定量分析(Recurrence Quantitative Analysis,RQA)与多核学习支持向量机(MKLSVM)相结合的检测模型,以提高检测GFRP中不同类型缺陷的能力。结果表明,该模型能够准确识别GFRP中的分层缺陷与夹杂缺陷,检测识别率达到92.92%,并且与基于离散小波变换(Discrete Wavelet Transform,DWT)和经验模态分解(Empirical Mode Decomposition,EMD)的MKLSVM检测模型的识别率相比,所提出的检测模型的识别率分别提高了7.5%和3.75%。 展开更多
关键词 玻璃纤维增强复合材料 超声检测 递归定量分析 多核学习支持向量
下载PDF
极限学习机与支持向量机在储层渗透率预测中的对比研究 被引量:37
7
作者 潘华贤 程国建 蔡磊 《计算机工程与科学》 CSCD 北大核心 2010年第2期131-134,共4页
极限学习机ELM是一种简单易用、有效的单隐层前馈神经网络SLFNs学习算法。传统的神经网络学习算法(如BP算法)需要人为设置大量的网络训练参数,并且很容易产生局部最优解。极限学习机只需要设置网络的隐层节点个数,在算法执行过程中不需... 极限学习机ELM是一种简单易用、有效的单隐层前馈神经网络SLFNs学习算法。传统的神经网络学习算法(如BP算法)需要人为设置大量的网络训练参数,并且很容易产生局部最优解。极限学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值以及隐元的偏置,并且产生唯一的最优解,因此具有学习速度快且泛化性能好的优点。本文将极限学习机引入到储层渗透率的预测中,通过对比支持向量机,分析其在储层渗透率预测中的可行性和优势。实验结果表明,极限学习机与支持向量机有近似的预测精度,但在参数选择以及学习速度上极限学习机具有明显的优势。 展开更多
关键词 极限学习 前馈神经网络 渗透率 支持向量 预测模型
下载PDF
基于机器学习与红外光谱技术的变压器油老化行为研究
8
作者 肖忠良 袁荣耀 +6 位作者 付壮 刘成 尹碧露 肖敏之 赵亭亭 匡尹杰 宋刘斌 《光谱学与光谱分析》 北大核心 2025年第2期434-442,共9页
为解决现阶段油品老化分析工作复杂、误差大等问题,提出一种红外光谱与机器学习(ML)相融合的技术。借助傅里叶变换中红外(FT-MIR)光谱仪采集三种变压器油在不同老化时间的样本光谱,运用多种预处理方法对样本光谱进行预处理,以自动寻峰... 为解决现阶段油品老化分析工作复杂、误差大等问题,提出一种红外光谱与机器学习(ML)相融合的技术。借助傅里叶变换中红外(FT-MIR)光谱仪采集三种变压器油在不同老化时间的样本光谱,运用多种预处理方法对样本光谱进行预处理,以自动寻峰并求得特征峰面积之和。采用偏最小二乘回归(PLSR)和粒子群优化-支持向量机回归(PSO-SVR)算法建立了变压器油老化程度定量分析模型,研究并分析了多种光谱数据预处理方法对红外光谱降噪、基线校正等处理效果以及对两种模型定量分析效果的影响。结果表明,油品光谱预处理效果最好的是平滑法,其中SG+SVR和SG+PLSR模型拟合优度(R^(2))分别为0.9814、0.9913,平均绝对误差(MAE)为0.3124、0.2880,均方根误差(RMSE)仅有0.0977、0.3790。在合适的预处理条件下,两种机器学习算法鲁棒性和可靠性均较强,模型预测值与实际值间差异极小。 展开更多
关键词 学习 傅里叶变换中红外光谱 变压器油 老化程度 粒子群优化-支持向量回归(PSO-SVR) 偏最小二乘回归(PLSR)
下载PDF
深埋长大隧道地温预测的机器学习算法对比研究
9
作者 周权 罗锋 +1 位作者 柴波 周爱国 《安全与环境工程》 北大核心 2025年第1期137-147,共11页
地热对隧道施工、工程结构及运营安全等均有较大的危害,随着我国基础设施建设布局西移,隧道建设的地质条件愈发复杂,隧道埋深和长度不断增加,隧道施工期高温热害问题频发。针对传统地温预测方法中预测精度不高、数据运用不充分,单一机... 地热对隧道施工、工程结构及运营安全等均有较大的危害,随着我国基础设施建设布局西移,隧道建设的地质条件愈发复杂,隧道埋深和长度不断增加,隧道施工期高温热害问题频发。针对传统地温预测方法中预测精度不高、数据运用不充分,单一机器学习模型解译性差等问题,以A隧道为研究对象,将决策树(decision tree,DT)、支持向量机(support vector machine,SVM)、随机森林(random forest,RF)进行耦合,提出了基于DT-SVM-RF模型的深埋长大隧道地温预测方法。在分析隧道综合测井、地应力及岩石热物理试验、航空物探数据后,选取深度、声波波速等10个影响因子作为模型的输入,采用随机交叉验证和空间交叉验证对模型的鲁棒性、泛化能力进行检验,构建LASSO回归、随机森林、互信息3种回归模型,分析10个影响因子的特征重要性排序。结果表明:在测试集上多元线性回归、支持向量机、人工神经网络和决策树-支持向量机-随机森林(decision tree-support vector machinerandom forest,DT-SVM-RF)模型决定系数(R^(2))分别为0.76、0.91、0.88、0.93,均方误差MSE分别为17.64、6.25、8.46、5.20,DT-SVM-RF模型具有相对更优的预测性能,深度、岩石导温系数、岩石导热系数、最大水平主应力特征较为重要,说明DT-SVM-RF模型能有效地提高地温预测的准确率。研究结果可为类似隧道地温预测提供一种精度更高的可行新思路。 展开更多
关键词 隧道热害 隧道安全 多元线性回归 支持向量(SVM) 森林(RF) 人工神经网络(ANN) 特征选择
下载PDF
弱监督场景下的支持向量机算法综述 被引量:3
10
作者 丁世飞 孙玉婷 +3 位作者 梁志贞 郭丽丽 张健 徐晓 《计算机学报》 EI CAS CSCD 北大核心 2024年第5期987-1009,共23页
支持向量机(Support Vector Machine,SVM)是一种建立在结构风险最小化原则上的统计学习方法,以其在非线性、小样本以及高维问题中的独特优势被广泛应用于图像识别、故障诊断以及文本分类等领域.但SVM是一种监督学习算法,它旨在利用大量... 支持向量机(Support Vector Machine,SVM)是一种建立在结构风险最小化原则上的统计学习方法,以其在非线性、小样本以及高维问题中的独特优势被广泛应用于图像识别、故障诊断以及文本分类等领域.但SVM是一种监督学习算法,它旨在利用大量的、唯一且明确的真值标记样本来训练学习器,在不完全监督、不确切监督以及多义监督等弱监督场景下难以取得较好的效果.本文首先阐述了弱监督场景的概念和SVM的相关理论,然后从弱监督场景角度出发,系统地梳理了目前SVM算法的研究现状和发展,包括基于半监督学习、多示例学习以及多标记学习的方法;其中基于半监督学习的方法根据数据假设可细分为基于聚类假设和基于流形假设的方法,基于多标记学习的方法根据解决方案可细分为基于示例水平空间、基于包水平空间以及基于嵌入空间的方法,基于多标记学习的方法根据处理思路可细分为基于问题转换和基于算法自适应的方法;随后,本文总结了部分代表性算法在公开数据集上的实验结果;最后,探讨并展望了未来可能的研究方向. 展开更多
关键词 弱监督场景 支持向量 半监督学习 多示例学习 多标记学习
下载PDF
基于小波核极限学习机的烟叶烘烤过程的智能识别 被引量:2
11
作者 邢玉清 樊彩霞 +2 位作者 豆根生 宋朝鹏 吴莉莉 《中国烟草学报》 CAS CSCD 北大核心 2024年第1期55-62,共8页
烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量。针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法。实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷... 烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量。针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法。实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷边、小打筒、大打筒和干筋6个烘烤阶段分别提取了颜色、纹理和温湿度特征,组建了9维特征向量进入小波核极限学习机,通过增量型算法自适应地选择神经元个数,快速准确地识别了6个阶段,得到了98.33%的识别率。实验结果表明本文提出的基于小波核极限学习机的烟叶烘烤过程的智能识别方法具有一定的可行性,为研发烟叶烘烤智能调控系统奠定了理论基础。 展开更多
关键词 极限学习 小波核函数 烟叶烘烤 特征提取 识别
下载PDF
基于改进支持向量机的混凝土桥梁极限荷载预测研究
12
作者 陈永雷 《设备管理与维修》 2024年第2期172-174,共3页
作为基础设施的重要组成部分,混凝土桥梁承担着货物运输和人员通行的重要任务,然而由于长期受到环境因素和交通负荷的影响,桥梁结构会逐渐受损,可能会导致严重事故和损失,因此准确预测混凝土桥梁的极限荷载对于确保桥梁结构的安全性和... 作为基础设施的重要组成部分,混凝土桥梁承担着货物运输和人员通行的重要任务,然而由于长期受到环境因素和交通负荷的影响,桥梁结构会逐渐受损,可能会导致严重事故和损失,因此准确预测混凝土桥梁的极限荷载对于确保桥梁结构的安全性和可靠性至关重要。以改进支持向量机为基础,对混凝土桥梁极限荷载进行精准预测,为桥梁结构的健康监测和维护提供一种可靠的工具和方法。 展开更多
关键词 改进支持向量 混凝土桥梁 极限荷载预测
下载PDF
基于支持向量机集成的船舶舱室温湿度预测 被引量:2
13
作者 刘丙杰 侯慕馨 冀海燕 《海军工程大学学报》 CAS 北大核心 2024年第3期21-25,32,共6页
针对船舶舱室温湿度保持困难、数据难以预测的问题,提出了基于克隆选择算法的支持向量机集成方法。首先,利用克隆选择算法优化个体支持向量机,根据个体预测误差进行自适应集成;然后,对舱室温湿度时间序列数据样本化,采用支持向量机集成... 针对船舶舱室温湿度保持困难、数据难以预测的问题,提出了基于克隆选择算法的支持向量机集成方法。首先,利用克隆选择算法优化个体支持向量机,根据个体预测误差进行自适应集成;然后,对舱室温湿度时间序列数据样本化,采用支持向量机集成进行训练、测试;最后通过统计测试结果以及与BP神经网络、单支持向量机、GM(2,1)模型的预测误差对比发现,支持向量机集成模型可有效预测空调故障条件下船舶舱室温湿度的变化规律,为装备的使用和维护提供技术支持。 展开更多
关键词 支持向量集成 船舶舱室 温湿度预测
下载PDF
基于声音特征优化和改进支持向量机的鸟声识别 被引量:4
14
作者 陈晓 曾昭优 《测控技术》 2024年第6期21-25,32,共6页
为了在低参数量下提高鸟鸣声的识别准确率,提出了一种新的鸟声识别方法,包括鸟声信号特征优化和乌鸦搜索-支持向量机(Support Vector Machine,SVM)分类识别。该方法首先采用主成分分析法对从鸟声中提取的梅尔频率倒谱系数(Mel Frequency... 为了在低参数量下提高鸟鸣声的识别准确率,提出了一种新的鸟声识别方法,包括鸟声信号特征优化和乌鸦搜索-支持向量机(Support Vector Machine,SVM)分类识别。该方法首先采用主成分分析法对从鸟声中提取的梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)和翻转梅尔频率倒谱系数进行选择,得到优化后的声音特征参数并将其作为鸟声识别算法的输入;然后利用乌鸦搜索算法对SVM的核参数和损失值进行选优,得到改进的SVM网络用于鸟声分类识别。试验结果表明,该方法对5种鸟声识别的准确率为92.2%,声音特征维数在16时可以得到最好的识别效果。该方法为野外鸟声自动识别提供了一种可行的方式。 展开更多
关键词 声音识别 鸟声识别 主成分分析 支持向量 乌鸦搜索算法
下载PDF
基于支持向量机的蓄水工程土地利用分类与动态变化 被引量:1
15
作者 王军 柴志福 +3 位作者 马浩艳 赵志锰 邬佳宾 付卫平 《干旱区研究》 CSCD 北大核心 2024年第4期581-589,共9页
为进一步恢复和重建蓄水工程建成前后土地利用变化的历史过程,更好掌握和预报土地利用转移方向,本文利用支持向量机理论开展了土地利用类型解译的适应性研究,通过梳理土地利用动态变化,剖析了蓄水工程建成前后土地利用结构的自适应调节... 为进一步恢复和重建蓄水工程建成前后土地利用变化的历史过程,更好掌握和预报土地利用转移方向,本文利用支持向量机理论开展了土地利用类型解译的适应性研究,通过梳理土地利用动态变化,剖析了蓄水工程建成前后土地利用结构的自适应调节能力和演变方向。结果表明:(1)依靠自学习和自适应等优势能力,支持向量机解译土地利用分类的总体精度高达91.7%、Kappa系数为0.90;除耕地生产者精度相对较低外,水体、林地等其他土地类型具有较高的分类识别能力。(2)利用谷歌地球引擎(GEE)平台梳理土地利用类型演变过程发现,受“三北防护林”工程二阶段(2001—2020年)等项目实施影响,建设用地、林地面积出现较大增幅,其中,林地面积较2000年实施初期增加了近5倍。(3)工程建设运行后林地和建设用地近2/3面积保持了原貌,水体和未利用土地受水利和城建工程影响,原貌类型超过65%以上面积变成了其他类型;“三北防护林”工程加快了林地面积的增加和草地植被覆盖度的提高,低覆盖度草地转移到中、高覆盖度草地的面积净增幅达48.0%、50.2%。 展开更多
关键词 土地利用 支持向量 状态转移 蓄水工程
下载PDF
基于灰色关联度分析-极限学习机的低阻油层及水淹层测井识别——以渤海P区块馆陶组为例 被引量:1
16
作者 张超谟 徐文斌 +5 位作者 张亚男 张冲 张占松 石文睿 杨旺旺 陈星河 《长江大学学报(自然科学版)》 2024年第2期45-51,126,共8页
历经近20的开发,渤海P区块进入高含水期,馆陶组发育的大量低阻油层与水淹层在测井曲线形态上差异不明显。为了精确进行水淹层识别以及水淹层等级划分,采用了机器学习算法。首先采用灰色关联度分析,筛选低阻油层和水淹层识别的敏感参数曲... 历经近20的开发,渤海P区块进入高含水期,馆陶组发育的大量低阻油层与水淹层在测井曲线形态上差异不明显。为了精确进行水淹层识别以及水淹层等级划分,采用了机器学习算法。首先采用灰色关联度分析,筛选低阻油层和水淹层识别的敏感参数曲线;其次构建了极限学习机水淹层识别模型,对模型进行训练,获取最优参数。将其应用于实际资料处理,结果表明,基于灰色关联度分析极限学习机的低阻油层及水淹层测井识别方法对低阻油层与水淹层的预测精度较高,符合率达89.3%,远远优于未经过灰色关联度分析筛选的预测结果,具有实际应用价值。 展开更多
关键词 低阻油层 水淹层识别 灰色关联度分析 极限学习
下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:4
17
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量 软测量模型
下载PDF
基于支持向量机的油气生产复杂系统信息物理攻击识别方法 被引量:1
18
作者 胡瑾秋 张来斌 +1 位作者 李瑜环 李馨怡 《安全与环境学报》 CAS CSCD 北大核心 2024年第8期3053-3062,共10页
在数据驱动的复杂油气生产系统中,存在故障数据干扰攻击识别的问题,忽视系统内部可能存在的故障数据对攻击检测的影响,则难以及时防御攻击或解决故障。因此,为了提高复杂油气生产系统中信息物理攻击检测的准确性,提出了一种基于支持向... 在数据驱动的复杂油气生产系统中,存在故障数据干扰攻击识别的问题,忽视系统内部可能存在的故障数据对攻击检测的影响,则难以及时防御攻击或解决故障。因此,为了提高复杂油气生产系统中信息物理攻击检测的准确性,提出了一种基于支持向量机的无向图联合检测方法。首先,对复杂油气生产系统中的关键传感器拓扑化形成无向图,建立传感器之间的连接关系并捕捉数据交互。然后,利用支持向量机检测传感器系统异常原因,并选择接收站低压泵及接收站储罐系统作为示例验证,前者的准确率、精确度、召回率和F1分数均高于99%,后者F1分数高于99%,其余均高于97%。与传统方法K均值聚类相比,本方法具有更高的准确性、鲁棒性和完整性,有助于防范攻击和生产事故,保障油气生产系统的安全。 展开更多
关键词 安全工程 油气生产复杂系统 信息物理攻击:异常检测 支持向量
下载PDF
运用灰色支持向量机技术预测混凝土桥梁的极限荷载
19
作者 陈永雷 《工程机械与维修》 2024年第2期50-52,共3页
叙述了提取混凝土桥梁极限荷载影响因素的重要性和影响桥梁极限荷载的多方面因素,解释了灰色预测法和支持向量机的基本定义和主要作用,阐述了灰色预测法预测建模和灰色支持向量机计算方法,选取了某混凝土桥梁为测试对象,设置实验测试方... 叙述了提取混凝土桥梁极限荷载影响因素的重要性和影响桥梁极限荷载的多方面因素,解释了灰色预测法和支持向量机的基本定义和主要作用,阐述了灰色预测法预测建模和灰色支持向量机计算方法,选取了某混凝土桥梁为测试对象,设置实验测试方案及参数并进行了测试,取得了预期效果。 展开更多
关键词 混凝土桥梁 灰色支持向量 极限荷载 预测技术
下载PDF
基于优化支持向量机及极限学习机的滑坡变形趋势研究
20
作者 唐业旗 杨桂花 刘慧中 《河南科学》 2017年第7期1132-1138,共7页
受地质环境及多种诱发因素的影响,滑坡变形包含了多层次的信息,通过单一预测模型难以准确、有效地判断滑坡变形趋势.因此,建立多方法集合的系统模型十分必要.首先,利用小波去噪对滑坡变形序列进行去噪处理,将滑坡变形分解为趋势项和误差... 受地质环境及多种诱发因素的影响,滑坡变形包含了多层次的信息,通过单一预测模型难以准确、有效地判断滑坡变形趋势.因此,建立多方法集合的系统模型十分必要.首先,利用小波去噪对滑坡变形序列进行去噪处理,将滑坡变形分解为趋势项和误差项,采用PSO-SVM模型对滑坡变形的趋势项进行预测,利用ELM神经网络进行误差修正,两者结果叠加即得到滑坡的变形预测值;其次,利用秩相关系数检验对滑坡的变形趋势进行判断,以验证前法预测结果的准确性,并探讨该方法在滑坡变形趋势判断中的适用性.经实例检验,得出:该预测模型的预测值与实测值基本相符,且较单一预测模型具有更高的预测精度;同时,秩相关系数检验的结果与预测结果相符,验证了变形预测结果的准确性及该方法在滑坡变形趋势判断中的适用性. 展开更多
关键词 滑坡 PSO-SVM模型 极限学习 秩相关系数检验 变形预测
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部