期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于小波和支持向量机的人脸识别技术 被引量:11
1
作者 周志明 王以治 +1 位作者 黄文芝 王宁宁 《计算机工程与应用》 CSCD 北大核心 2004年第12期52-54,共3页
小波变换具有良好的多尺度特征表达能力,能将图像的大部分能量集中到最低分辨率子图像,高频部分则对应于图像的边缘和轮廓,可以很好地压缩和表征人脸图像的特征。支持向量机技术针对小样本问题设计,对人脸识别这样的非线性、高维数的小... 小波变换具有良好的多尺度特征表达能力,能将图像的大部分能量集中到最低分辨率子图像,高频部分则对应于图像的边缘和轮廓,可以很好地压缩和表征人脸图像的特征。支持向量机技术针对小样本问题设计,对人脸识别这样的非线性、高维数的小样本问题有非常好的分类效果和学习推广能力,目前已经成为模式识别的首选分类器。文中使用小波变换来对人脸的高维图像矢量进行压缩,并设计了一个支持向量机分类器系统来识别人脸。试验结果验证了该系统有很高的识别率和较强的鲁棒性。 展开更多
关键词 小波变换 支持向量机人脸识别 核函数
下载PDF
基于小波分解和支持向量机的准正面人脸识别方法 被引量:8
2
作者 陶亮 庄镇泉 《电路与系统学报》 CSCD 2003年第6期107-112,共6页
基于小波分解提取人脸特征技术和多分类支持向量机模型,提出了一种新的准正面人脸识别算法。小波分解提取人脸特征具有对表情变化不敏感的特点;支持向量机作为分类器被认为具有很高的推广(generalization)性能,无需先验知识。在所提出... 基于小波分解提取人脸特征技术和多分类支持向量机模型,提出了一种新的准正面人脸识别算法。小波分解提取人脸特征具有对表情变化不敏感的特点;支持向量机作为分类器被认为具有很高的推广(generalization)性能,无需先验知识。在所提出的算法中,首先对训练图像进行预处理,然后使用小波分解方法对人脸图像进行特征提取,用所提取的人脸特征向量训练多分类支持向量机模型,最后用训练好的支持向量机进行人脸识别。利用ORL人脸图像库对该算法的实验测试结果,以及与其它人脸识别方法的比较结果表明了该算法在识别性能方面的优越性。 展开更多
关键词 人脸识别:支持向量 小波分解 ORL人脸图像库
下载PDF
Face Orientation Normalization Using Eye Positions 被引量:2
3
作者 Audrius Bukis Rimvydas Simutis 《Computer Technology and Application》 2013年第10期513-521,共9页
Despite the fact that progress in face recognition algorithms over the last decades has been made, changing lighting conditions and different face orientation still remain as a challenging problem. A standard face rec... Despite the fact that progress in face recognition algorithms over the last decades has been made, changing lighting conditions and different face orientation still remain as a challenging problem. A standard face recognition system identifies the person by comparing the input picture against pictures of all faces in a database and finding the best match. Usually face matching is carried out in two steps: during the first step detection of a face is done by finding exact position of it in a complex background (various lightning condition), and in the second step face identification is performed using gathered databases. In reality detected faces can appear in different position and they can be rotated, so these disturbances reduce quality of the recognition algorithms dramatically. In this paper to increase the identification accuracy we propose original geometric normalization of the face, based on extracted facial feature position such as eyes. For the eyes localization lbllowing methods has been used: color based method, mean eye template and SVM (Support Vector Machine) technique. Experimental investigation has shown that the best results for eye center detection can be achieved using SVM technique. The recognition rate increases statistically by 28% using face orientation normalization based on the eyes position. 展开更多
关键词 Face recognition support vector machine orientation normalization and facial features
下载PDF
Hybrid SVM/HMM Method for Face Recognition 被引量:1
4
作者 刘江华 陈佳品 程君实 《Journal of Donghua University(English Edition)》 EI CAS 2004年第1期34-38,共5页
A face recognition system based on Support Vector Machine (SVM) and Hidden Markov Model (HMM) has been proposed. The powerful discriminative ability of SVM is combined with the temporal modeling ability of HMM. The ou... A face recognition system based on Support Vector Machine (SVM) and Hidden Markov Model (HMM) has been proposed. The powerful discriminative ability of SVM is combined with the temporal modeling ability of HMM. The output of SVM is moderated to be probability output, which replaces the Mixture of Gauss (MOG) in HMM. Wavelet transformation is used to extract observation vector, which reduces the data dimension and improves the robustness.The hybrid system is compared with pure HMM face recognition method based on ORL face database and Yale face database. Experiments results show that the hybrid method has better performance. 展开更多
关键词 SVM HMM face recognition probability output wavelet transformation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部