期刊文献+
共找到131篇文章
< 1 2 7 >
每页显示 20 50 100
蚁群优化算法优化支持向量机的视频分类 被引量:1
1
作者 王杨 刘蒙 闫伟光 《现代电子技术》 北大核心 2020年第1期56-58,62,共4页
针对当前支持向量机支持优化的参数无法获得高精度的体育视频分类结果的难题,为了提高体育视频分类正确率,提出基于蚁群优化算法优化支持向量机的体育视频分类方法。首先采集体育视频,并提取体育视频分类的多个特征;然后采用主成分分析... 针对当前支持向量机支持优化的参数无法获得高精度的体育视频分类结果的难题,为了提高体育视频分类正确率,提出基于蚁群优化算法优化支持向量机的体育视频分类方法。首先采集体育视频,并提取体育视频分类的多个特征;然后采用主成分分析算法对体育视频分类特征进行处理,作为支持向量机的输入,体育视频类别作为支持向量机的输出,建立体育视频分类模型,并采用蚁群优化算法对支持向量机进行优化;最后采用多个体育视频数据进行分类仿真实验,结果表明,蚁群优化算法优化支持向量机的体育视频分类正确率高于90%,降低了体育视频分类错误,体育视频分类效果明显优于当前其他类型的体育视频分类方法,而且体育视频分类效率得到有效的改善。 展开更多
关键词 体育视频 分类方法 蚁群优化算法 主成分分析 特征提取 支持向量机优化
下载PDF
基于组合赋权的混合粒子群优化支持向量机的岩爆倾向性预测 被引量:13
2
作者 温廷新 陈晓宇 《安全与环境学报》 CAS CSCD 北大核心 2018年第2期440-445,共6页
为有效预测岩爆灾害发生烈度,提出一种基于组合赋权的混合粒子群优化支持向量机(H-PSO-SVM)岩爆倾向性预测模型。根据岩爆发生机制,在分析岩爆发生的主要影响因素的基础上确定出评判指标;综合考虑模糊层次分析法(FAHP)所得主观权重... 为有效预测岩爆灾害发生烈度,提出一种基于组合赋权的混合粒子群优化支持向量机(H-PSO-SVM)岩爆倾向性预测模型。根据岩爆发生机制,在分析岩爆发生的主要影响因素的基础上确定出评判指标;综合考虑模糊层次分析法(FAHP)所得主观权重和熵权法所得客观权重,应用调和平均数概念,构建组合赋权准则;引入遗传算法交叉、变异操作改进传统粒子群(PSO)极值跟踪和粒子更新方法,建立H-PSO-SVM岩爆倾向性预测模型。利用国内外已有工程实例数据进行50次随机抽样试验,对比分析H-PSO-SVM模型和PSO-SVM模型等预测结果。结果表明:H-PSO-SVM模型应用于岩爆工程实例预测具有可行性和适应性,模型预测的准确率高于其他模型,且预测结果更稳定。 展开更多
关键词 安全工程 岩爆倾向性预测 组合赋权 混合粒子群优化支持向量(H-PSO-SVM)
下载PDF
支持向量机替代模型的遗传优化设计 被引量:2
3
作者 向国齐 严志坚 黄大贵 《电子科技大学学报》 EI CAS CSCD 北大核心 2009年第3期459-462,共4页
针对实际工程中常见的性能函数不能显式表示的优化问题,提出一种基于支持向量机替代模型的遗传优化设计方法。利用试验设计选取合适的设计参数样本点,通过实验或数值仿真获得响应输出,结合遗传算法构建具有参数优化功能的支持向量机替... 针对实际工程中常见的性能函数不能显式表示的优化问题,提出一种基于支持向量机替代模型的遗传优化设计方法。利用试验设计选取合适的设计参数样本点,通过实验或数值仿真获得响应输出,结合遗传算法构建具有参数优化功能的支持向量机替代模型;将支持向量机模型作为目标性能函数,结合其他约束条件完成优化模型的建立,并应用遗传算法进行优化,形成一套准确、高效、适应性强的优化方法。以典型电子装备功分器的结构尺寸优化为例,采用均匀试验设计和高频电磁场仿真软件HFSS获取替代模型训练的学习样本,建立功分器模型的幅度比、相位差和驻波3个响应面目标函数,并对该多目标优化问题进行遗传寻优。 展开更多
关键词 遗传算法 代理模型 优化设计:支持向量
下载PDF
优化的邻近支持向量机在图像检索中的应用 被引量:9
4
作者 王华秋 王斌 《重庆理工大学学报(自然科学)》 CAS 2014年第9期66-71,共6页
邻近支持向量机由支持向量机衍生而来,它将支持向量机中二次规划问题的求解转换为线性方程组的求解,从而能在保证一定精度的情况下更加快速地得到分类器。传统的非线性核邻近支持向量机不能很好地解决多范围数据的多分类问题。提出了... 邻近支持向量机由支持向量机衍生而来,它将支持向量机中二次规划问题的求解转换为线性方程组的求解,从而能在保证一定精度的情况下更加快速地得到分类器。传统的非线性核邻近支持向量机不能很好地解决多范围数据的多分类问题。提出了一种邻近支持向量机的优化方法,并将其应用到图像检索中。它利用高斯函数将图像特征数据映射到0-1之间以提高其差异化水平,并将其放入非线性核中,然后以加权K-means聚类算法选择最优参数,从而提高了非线性核PSVM的分类能力。实验以coral图像库中的4类图片作为图片库,对比了优化前后的检索命中率。实验结果表明:优化后的检索效果优于优化前,说明将优化的邻近支持向量机应用于图像检索是有效的。 展开更多
关键词 优化的邻近支持向量 图像检索 高斯函数 加权聚类算法
下载PDF
基于粒子群优化支持向量机的矿井涌水量预测 被引量:2
5
作者 臧大进 刘增良 曹云峰 《凯里学院学报》 2010年第6期26-29,共4页
矿井涌水量预测是一项复杂而有难度的技术,受到很多因素的影响.提出基于粒子群优化支持向量机(PSO-SVM)的矿井涌水量预测方法,即将粒子群优化算法(PSO)用于SVM参数优化.它不仅具有很强的全局搜索能力,而且容易实现.经实验结果证明,PSO-... 矿井涌水量预测是一项复杂而有难度的技术,受到很多因素的影响.提出基于粒子群优化支持向量机(PSO-SVM)的矿井涌水量预测方法,即将粒子群优化算法(PSO)用于SVM参数优化.它不仅具有很强的全局搜索能力,而且容易实现.经实验结果证明,PSO-SVM的预测输出与实测数据基本一致,其预测精度高于普通的SVM,所有的预测误差都远小于5%的工程许可误差. 展开更多
关键词 粒子群优化支持向量 粒子群优化算法 支持向量 矿井涌水量 预测
下载PDF
基于粒子群优化支持向量机的冲天炉铁液质量预测
6
作者 刘增良 李铁岭 《铜陵学院学报》 2011年第3期98-100,共3页
冲天炉铁液质量预测是一项复杂而有难度的技术,受到很多因素的影响。文章提出了基于粒子群优化支持向量机(PSO-SVM)的冲天炉铁液质量预测方法,即将粒子群优化算法(PSO)用于SVM参数优化。它不仅具有很强的全局搜索能力,而且容易实现。经... 冲天炉铁液质量预测是一项复杂而有难度的技术,受到很多因素的影响。文章提出了基于粒子群优化支持向量机(PSO-SVM)的冲天炉铁液质量预测方法,即将粒子群优化算法(PSO)用于SVM参数优化。它不仅具有很强的全局搜索能力,而且容易实现。经实验结果证明,PSO-SVM的预测输出与实测数据基本一致,其预测精度高于普通的SVM,所有的预测误差都远小于5%的工程许可误差。 展开更多
关键词 粒子群优化支持向量 粒子群优化算法 支持向量 冲天炉铁液质量 预测
下载PDF
高光谱技术结合网格搜索优化支持向量机的桃缺陷检测 被引量:6
7
作者 张立秀 张淑娟 +3 位作者 孙海霞 薛建新 任锐 刘文俊 《食品与发酵工业》 CAS CSCD 北大核心 2023年第16期269-275,共7页
为快速区分完好桃、疮痂桃、腐烂桃(虫咬桃、鸟啄桃),实现久保桃外部缺陷的无损检测,该研究利用高光谱技术对久保桃的外部缺陷进行了研究。共采集302个久保桃样本(120个完好桃样本、120个缺陷桃样本、62个验证桃样本),对比经光谱学、基... 为快速区分完好桃、疮痂桃、腐烂桃(虫咬桃、鸟啄桃),实现久保桃外部缺陷的无损检测,该研究利用高光谱技术对久保桃的外部缺陷进行了研究。共采集302个久保桃样本(120个完好桃样本、120个缺陷桃样本、62个验证桃样本),对比经光谱学、基线校正、中值滤波(median filter,MF)等5种预处理方法建立偏最小二乘法模型的准确率,选取经MF预处理后的光谱数据进行后续建模研究。采用回归系数法、竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)提取特征波长,建立网格搜索法优化支持向量机(grid search optimized support vector machines,GS-SVM)模型、遗传算法优化SVM模型、粒子群算法优化的SVM模型并进行对比分析。结果表明,CARS-GS-SVM模型预测效果最好,其训练集的判别率为93.33%,预测集的判别率为96.77%,验证集的判别准确率为91.94%,运行时间为11.5 s。该研究利用高光谱技术结合CARS-GS-SVM模型实现了久保桃外部缺陷的检测,为开发水果的分级分选设备提供了理论基础。 展开更多
关键词 高光谱 久保桃 外部缺陷 网格搜索法优化支持向量 检测
下载PDF
免疫遗传优化支持向量机回归在混沌时间序列预测上的应用 被引量:1
8
作者 张晓志 蒋丽峰 《湖北广播电视大学学报》 2007年第10期155-156,共2页
在分析支持向量机(Support Vector Machines,SVM)回归算法的基础上,提出了一种免疫遗传优化向量机回归算法来预测混沌时间序列。算法根据混沌时间序列样本的特点利用免疫遗传算法对支持向量机回归方法参数进行优化。免疫遗传算法有效地... 在分析支持向量机(Support Vector Machines,SVM)回归算法的基础上,提出了一种免疫遗传优化向量机回归算法来预测混沌时间序列。算法根据混沌时间序列样本的特点利用免疫遗传算法对支持向量机回归方法参数进行优化。免疫遗传算法有效地克服了未成熟收敛现象,获得相关参数最优值。对混沌时间序列预测的实际算例表明,与支持向量机方法相比,本文所提的免疫遗传优化支持向量机回归方法具有更高的预测精度。 展开更多
关键词 免疫遗传优化支持向量 混沌时间序列预测 支持向量 免疫遗传算法
下载PDF
基于积温效应和优化支持向量机的短期电力负荷预测 被引量:19
9
作者 谭风雷 陈梦涛 汪龙龙 《电力需求侧管理》 2018年第5期33-36,共4页
从积温效应的表现形式出发,提出一种考虑积温效应的优化支持向量机负荷预测方法。在充分研究积温效应2种表现形式的基础上,建立温度修正模型,同时为进一步提高预测精度,采用优化支持向量机预测负荷。最后借助江苏某地区的历史数据,采用... 从积温效应的表现形式出发,提出一种考虑积温效应的优化支持向量机负荷预测方法。在充分研究积温效应2种表现形式的基础上,建立温度修正模型,同时为进一步提高预测精度,采用优化支持向量机预测负荷。最后借助江苏某地区的历史数据,采用最小二乘法求解积温效应参数、修正温度,并将修正之后的结果代入预测方法中,结果表明预测精度较高,具有一定的应用价值。 展开更多
关键词 负荷预测 积温效应 优化支持向量 最小二乘法
下载PDF
基于变分模态分解排列熵和粒子群优化支持向量机的滚动轴承故障诊断方法 被引量:8
10
作者 阮婉莹 马增强 李亚超 《济南大学学报(自然科学版)》 CAS 北大核心 2018年第4期291-296,共6页
针对滚动轴承故障振动信号的非平稳性和低信噪比的特点,提出基于变分模态分解(VMD)排列熵和粒子群优化支持向量机(PSO-SVM)的滚动轴承故障诊断方法;该方法利用VMD对信号进行预处理,可得若干本征模态分量(IMFs),根据包含故障信息的数量... 针对滚动轴承故障振动信号的非平稳性和低信噪比的特点,提出基于变分模态分解(VMD)排列熵和粒子群优化支持向量机(PSO-SVM)的滚动轴承故障诊断方法;该方法利用VMD对信号进行预处理,可得若干本征模态分量(IMFs),根据包含故障信息的数量筛选出有效IMFs,求其排列熵构造特征向量,建立支持向量机的滚动轴承故障诊断模型,并用粒子群算法优化参数,以提升分类性能;在滚动轴承故障诊断实例中,通过与VMD结合SVM和集成经验模态分解(EEMD)结合PSO-SVM进行对比。结果表明,本文中提出的方法故障诊断的准确率更高。 展开更多
关键词 滚动轴承 故障诊断 变分模态分解 排列熵 粒子群优化支持向量
下载PDF
混沌理论和支持向量机结合的负荷预测模型 被引量:10
11
作者 张智晟 马龙 孙雅明 《电力系统及其自动化学报》 CSCD 北大核心 2008年第6期31-35,共5页
根据电力负荷序列的混沌特性,提出混沌理论和蚁群优化支持向量机结合的电力系统短期负荷预测新方法,以相空间重构理论确定支持向量机的输入量个数;训练样本集由对应预测相点的最近邻相点集构成,且是按预测相点步进动态相轨迹生成;采用... 根据电力负荷序列的混沌特性,提出混沌理论和蚁群优化支持向量机结合的电力系统短期负荷预测新方法,以相空间重构理论确定支持向量机的输入量个数;训练样本集由对应预测相点的最近邻相点集构成,且是按预测相点步进动态相轨迹生成;采用蚁群优化算法对支持向量机敏感参数进行优化,从而可增强预测模型对混沌动力学的联想和泛化推理能力,提高负荷预测的精度和提高预测稳定性。对某地区负荷系统日、周预测仿真测试,证明其可获得稳定的较高预测精度。 展开更多
关键词 短期负荷预测 优化支持向量 混沌理论 蚁群优化算法
下载PDF
核电厂环境辐射监测传感器网络中缺失值的粒子群算法-最小二乘支持向量机估计算法 被引量:3
12
作者 高雨晨 唐耀庚 《核电子学与探测技术》 CAS CSCD 北大核心 2014年第12期1508-1513,共6页
传感器节点监测数据缺失会影响核电厂外围环境辐射监测的连续性,必须对缺失数据进行准确估计。提出一种基于最小二乘支持向量机(LSSVM)的监测数据缺失值估计算法,采用粒子群算法(PSO)确定模型参数的优化组合,根据核电厂外围环境(剂量率... 传感器节点监测数据缺失会影响核电厂外围环境辐射监测的连续性,必须对缺失数据进行准确估计。提出一种基于最小二乘支持向量机(LSSVM)的监测数据缺失值估计算法,采用粒子群算法(PSO)确定模型参数的优化组合,根据核电厂外围环境(剂量率变化特点,利用节点的历史监测数据和相邻节点当前监测数据构造样本空间,对传感器节点监测数据缺失值进行估计。用实际数据进行的实验结果表明,所提出的估计算法的最大相对估计误差为3%,相关系数为0.926375,估计精度远高于基于BP神经网络模型的估计算法,也优于采用GA优化参数的LSSVM估计算法。 展开更多
关键词 环境辐射监测 无线传感网(WSN) 缺失值 估计 粒子群优化最小二乘支持向量
下载PDF
基于响应面法和支持向量机模型的选区激光熔化参数优化
13
作者 刘玉德 高钰淳 +2 位作者 石文天 林宇翔 贾世龙 《应用激光》 CSCD 北大核心 2024年第10期1-12,共12页
合理的激光预烧结参数可降低选区激光熔化样件的表面粗糙度。为获得优质的加工参数,研究预烧结过程中激光功率、曝光时间、线间距和点间距对表面粗糙度的影响,并建立响应面法(RSM)和经蛇算法(SO)优化支持向量机(SVM)模型,使其能够预测... 合理的激光预烧结参数可降低选区激光熔化样件的表面粗糙度。为获得优质的加工参数,研究预烧结过程中激光功率、曝光时间、线间距和点间距对表面粗糙度的影响,并建立响应面法(RSM)和经蛇算法(SO)优化支持向量机(SVM)模型,使其能够预测并优化最小表面粗糙度对应的输入参数,结果表明,两模型都具有优秀的预测能力,但在优化能力和泛化能力上SO-SVM模型更为优秀,经SO-SVM模型优化后的工艺参数得到的最小表面粗糙度为17.7μm,小于响应面法优化得到的19.3μm。研究成果可为降低表面粗糙度,大大减少加工过程的试错成本并获得更优质的加工产品提供一种参考。 展开更多
关键词 选区激光熔化 优化支持向量 表面粗糙度 参数优化
原文传递
RCMNAAPE在旋转机械故障诊断中的应用
14
作者 储祥冬 戴礼军 +3 位作者 涂金洲 罗震寰 于震 秦磊 《机电工程》 CAS 北大核心 2024年第6期1039-1049,共11页
针对精细复合多尺度排列熵(RCMPE)无法充分提取旋转机械振动信号中的故障信息,从而导致旋转机械故障识别准确率不稳定这一缺陷,提出了一种基于精细复合多尺度归一化幅值感知排列熵(RCMNAAPE)、拉普拉斯分数(LS)和灰狼算法优化支持向量机... 针对精细复合多尺度排列熵(RCMPE)无法充分提取旋转机械振动信号中的故障信息,从而导致旋转机械故障识别准确率不稳定这一缺陷,提出了一种基于精细复合多尺度归一化幅值感知排列熵(RCMNAAPE)、拉普拉斯分数(LS)和灰狼算法优化支持向量机(GWO-SVM)的旋转机械故障诊断方法。首先,利用幅值感知排列熵替换了RCMPE中的排列熵,提出了RCMNAAPE,并将其用于提取旋转机械振动信号的故障特征生成特征样本;随后,采用了LS从原始的高维故障特征向量中筛选出较少的能够更准确描述故障状态的特征,构造敏感特征样本;最后,将低维的故障特征向量输入由灰狼算法优化的支持向量机中进行了训练和测试,完成了旋转机械样本的故障识别和分类,利用滚动轴承和齿轮箱故障数据集将RCMNAAPE-LS-GWO-SVM与其他故障诊断方法进行了对比分析,并开展了评估。研究结果表明:基于RCMNAAPE-LS-GWO-SVM的故障诊断方法能够有效识别旋转机械的各类故障,其识别准确率高于其他对比的故障诊断方法,其中滚动轴承故障的识别准确率达到99.33%,齿轮箱故障的识别准确率达到98.67%。虽然,该方法的特征提取效率不佳,平均特征提取时间分别为153.02 s和163.98 s,仅优于精细复合多尺度模糊熵(RCMFE),但其综合性能更加优异。 展开更多
关键词 故障识别准确率 滚动轴承 齿轮箱 精细复合多尺度归一化幅值感知排列熵 拉普拉斯分数 灰狼优化支持向量
下载PDF
基于强化层次模糊熵的柴油机故障诊断方法
15
作者 宋业栋 马光伟 +1 位作者 朱小龙 张俊红 《振动.测试与诊断》 EI CSCD 北大核心 2024年第4期814-820,834,共8页
针对多尺度模糊熵(multi-scale fuzzy entropy,简称MFE)算法中多尺度化过程采用滑动均值滤波器导致原始信号高频信息丢失的问题,提出强化层次模糊熵方法(enhanced hierarchical fuzzy entropy,简称EHFE),用于表征原始信号中富含的高低... 针对多尺度模糊熵(multi-scale fuzzy entropy,简称MFE)算法中多尺度化过程采用滑动均值滤波器导致原始信号高频信息丢失的问题,提出强化层次模糊熵方法(enhanced hierarchical fuzzy entropy,简称EHFE),用于表征原始信号中富含的高低频故障模式信息。结合萤火虫算法优化支持向量机(firefly algorithm optimized support vector machine,简称FAOSVM),提出一种基于EHFE和FAOSVM的柴油机故障诊断方法。柴油机试验数据对比分析表明:相比于现有方法,所提出方法能够充分表征柴油机故障信号富含的模式信息,并且能够有效识别柴油机正时齿轮故障,识别精度达到99.6%,在极小样本下也能达到较好的识别精度。 展开更多
关键词 强化层次模糊熵 柴油 正时齿轮 故障诊断 萤火虫算法优化支持向量
下载PDF
机载探空温度传感器设计与研究
16
作者 毛家龙 刘清惓 +1 位作者 潘旭 王柯 《电子测量技术》 北大核心 2024年第13期1-9,共9页
针对无人机开展高空气象探测的需求,本文设计了一种带防辐射罩铠装铂电阻温度传感器。首先,采用计算流体动力学(CFD)的方法计算出有无防辐射罩铠装铂电阻温度传感器在多物理场下的太阳辐射误差,并进行对比分析。然后,使用支持向量机(SVM... 针对无人机开展高空气象探测的需求,本文设计了一种带防辐射罩铠装铂电阻温度传感器。首先,采用计算流体动力学(CFD)的方法计算出有无防辐射罩铠装铂电阻温度传感器在多物理场下的太阳辐射误差,并进行对比分析。然后,使用支持向量机(SVM)和粒子群优化支持向量机(PSO-SVM)算法训练数据比较预测模型。最后,搭建低气压风洞实验平台模拟高空大气环境,对比实验数据与算法预测结果。实验表明,本文提出的带防辐射罩铠装铂电阻温度传感器测量的平均误差为0.0141 K,均方根误差为0.0150 K。 展开更多
关键词 无人 铠装铂电阻 防辐射罩 计算流体动力学 粒子群优化支持向量
下载PDF
基于粒子群优化支持向量机的矿区土壤有机质含量高光谱反演 被引量:25
17
作者 谭琨 张倩倩 +1 位作者 曹茜 杜培军 《地球科学(中国地质大学学报)》 EI CAS CSCD 北大核心 2015年第8期1339-1345,共7页
为了监测复垦矿区土壤的有机质含量,综合利用光谱分析、统计学习理论与方法以及智能优化理论与方法,研究了矿区复垦土壤有机质含量与土壤光谱之间的关系,在此基础上建立了土壤有机质含量高光谱反演模型,实现土壤有机质含量定量检测.首... 为了监测复垦矿区土壤的有机质含量,综合利用光谱分析、统计学习理论与方法以及智能优化理论与方法,研究了矿区复垦土壤有机质含量与土壤光谱之间的关系,在此基础上建立了土壤有机质含量高光谱反演模型,实现土壤有机质含量定量检测.首先对原始土壤光谱数据进行预处理,然后进行相关性分析,提取450nm、500nm、650nm、770nm、1 460nm和2 140nm作为特征波段,最后利用多元线性回归(multiple linear regression,MLR)、偏最小乘回归(partial least squares regression,PLSR)和粒子群优化支持向量机回归(particle swarm optimization support vector machine regression,PSO-SVM)方法建立了土壤有机质含量的高光谱定量反演模型,并对模型进行验证.3种模型的验证结果如下:MLR、PLSR和PSO-SVM模型的R2分别为0.79、0.83和0.85,RMSE分别为5.26、4.93和4.76.实验结果表明,无论从模型的稳定性还是预测能力上,PSOSVM都要优于其他两个模型. 展开更多
关键词 土壤有 高光谱 遥感 粒子群优化支持向量 粒子群算法.
原文传递
基于粒子群优化支持向量机的瑞芬太尼血药浓度预测模型 被引量:7
18
作者 汤井田 曹扬 +1 位作者 肖嘉莹 郭曲练 《中国药学杂志》 CAS CSCD 北大核心 2013年第16期1394-1399,共6页
目的建立基于粒子群优化算法的瑞芬太尼血药浓度支持向量和模型。方法本实验采用粒子群算法(particle swarm optimization,PSO)优化支持向量机(support vector machine,SVM)算法,建立粒子群优化支持向量机(PSO-SVM)瑞芬太尼血药浓度预... 目的建立基于粒子群优化算法的瑞芬太尼血药浓度支持向量和模型。方法本实验采用粒子群算法(particle swarm optimization,PSO)优化支持向量机(support vector machine,SVM)算法,建立粒子群优化支持向量机(PSO-SVM)瑞芬太尼血药浓度预测模型。该模型能从较少的采样数据中准确捕捉血药浓度和时间、病人体征、给药方案之间的非线性关系。结果粒子群优化支持向量机的平均误差为-1.07%,非线性混合效应模型(nonlinear mixed effects modeling,NONMEM)为-2.24%,粒子群优化支持向量机网络的绝对平均误差9.09%,非线性混合效应模型为19.92%。结论粒子群优化支持向量机模型能迅速,稳定预测瑞芬太尼血药浓度,且准确度高,误差较小。该方法原理简单,实现便捷,运算速度快,适用于半衰期较短的麻醉速效药等多房室结构药物的群体药代药效学研究和分析。 展开更多
关键词 粒子群优化支持向量模型 瑞芬太尼 血药浓度
原文传递
IMRPE和AO-SVM在往复压缩机故障识别中的应用 被引量:3
19
作者 李占锋 张军昌 《机电工程》 CAS 北大核心 2023年第12期1983-1990,共8页
针对常规故障诊断方法不适用于提取往复压缩机声音信号的故障特征,导致往复压缩机的故障识别精度不高的问题,提出了基于改进多尺度反向排列熵(IMRPE)、t-分布邻域嵌入(t-SNE)和天鹰优化器(AO)优化支持向量机(SVM)的往复压缩机故障诊断... 针对常规故障诊断方法不适用于提取往复压缩机声音信号的故障特征,导致往复压缩机的故障识别精度不高的问题,提出了基于改进多尺度反向排列熵(IMRPE)、t-分布邻域嵌入(t-SNE)和天鹰优化器(AO)优化支持向量机(SVM)的往复压缩机故障诊断方法。首先,采用具有优异特征表达性能的IMRPE方法来提取往复压缩机声音信号的故障信息,构建了反映样本故障特征属性的故障特征向量;然后,利用t-SNE方法对故障特征进行了特征降维处理,以降低故障特征维数和去除冗余特征,从而获得了低维的敏感特征;最后,利用AO方法对SVM的惩罚系数和核参数进行了自适应搜索,从而建立了结构参数最优的分类器,并将低维的敏感故障特征输入至AO-SVM分类器中,进行了训练和分类,依据测试样本的输出标签完成了样本的故障识别;以往复压缩机声音信号故障数据为对象开展了研究,并评估了IMRPE-t-SNE-AO-SVM方法的有效性和稳定性。研究结果表明:IMRPE-t-SNE-AO-SVM方法的故障识别精度达到了97%,不仅能够用于准确且稳定地识别往复压缩机的故障类型,提高故障识别的精度,而且在准确率和稳定性方面优于其它对比方法。 展开更多
关键词 压缩 故障诊断 改进多尺度反向排列熵 t-分布邻域嵌入 天鹰优化优化支持向量
下载PDF
基于KPCA和PSO-SVM的木材干燥过程在线优化建模研究 被引量:1
20
作者 张冬妍 张春妍 尹文芳 《安徽农业科学》 CAS 2014年第7期1993-1996,共4页
针对木材干燥过程样本数据存在较多噪声的问题,采用核主成分分析方法对木材干燥数据进行预处理,然后利用粒子群优化的支持向量机建立木材干燥系统的在线预测模型,并进行在线预测。仿真研究表明,对数据预处理后,降维训练样本建立的木材... 针对木材干燥过程样本数据存在较多噪声的问题,采用核主成分分析方法对木材干燥数据进行预处理,然后利用粒子群优化的支持向量机建立木材干燥系统的在线预测模型,并进行在线预测。仿真研究表明,对数据预处理后,降维训练样本建立的木材干燥模型能够获得很好的预测精度,计算量小,速度快。在线模型能够实时反映系统当前状态,在线优化模型结构并预测系统下一步输出,实现了木材含水率特性变化的动态预测。模型输出误差小、泛化能力强,能够满足实际干燥过程在线预测控制的需要,具有良好的实际应用价值和工业前景。 展开更多
关键词 木材干燥 核主成分分析 粒子群优化支持向量 在线建模
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部