期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于大数据和支持向量机分类法的图书馆中转站构建研究 被引量:1
1
作者 杨志腾 孙萍 +2 位作者 朱天怡 苏冠文 马俊隆 《价值工程》 2020年第5期216-218,共3页
经济增长,群众的物质需求得到满足后,文化需求就会相对增加,书籍作为重要的文化载体,正在重新被我们拾起。但是在众多场所中,例如社区居民,大型工厂,存在借阅不平衡的问题,大量的图书资源集中在高校图书馆以及市区少量的公共图书馆,无... 经济增长,群众的物质需求得到满足后,文化需求就会相对增加,书籍作为重要的文化载体,正在重新被我们拾起。但是在众多场所中,例如社区居民,大型工厂,存在借阅不平衡的问题,大量的图书资源集中在高校图书馆以及市区少量的公共图书馆,无法辐射到大量的有需求群众集体,文章将以大数据为背景,结合支持向量机分类法,以高校图书馆为起点,探讨建立中转借阅体系,以解决图书借阅运营模式相对落后,无法充分利用资源的问题。 展开更多
关键词 图书馆中转站 借阅平衡 大数据 支持向量机分类法
下载PDF
基于数据挖掘技术的典型儿童呼吸道感染性疾病临床决策支持系统研究 被引量:5
2
作者 王淑 陈敏 +1 位作者 于广军 舒林华 《中国数字医学》 2015年第12期40-43,共4页
基于医院临床数据中心,采用数据挖掘技术建立了临床决策支持系统。通过对医院呼吸专科临床表征数据、诊断数据与疗效记录分析,提取呼吸专科患儿的呼吸道感染疾病典型特征值,进行支持向量机分类法对细菌、肺炎支(衣)原体、病毒、多种真... 基于医院临床数据中心,采用数据挖掘技术建立了临床决策支持系统。通过对医院呼吸专科临床表征数据、诊断数据与疗效记录分析,提取呼吸专科患儿的呼吸道感染疾病典型特征值,进行支持向量机分类法对细菌、肺炎支(衣)原体、病毒、多种真菌等多种致病性感染源进行感染源组分类,结合典型肺炎患儿用药模式,对症状-疾病-治疗的关系进行科学度量,依据匹配病例支持临床医生制定更有针对性的患者个性化需求的治疗方案。 展开更多
关键词 临床决策支持系统 数据挖掘 支持向量机分类法
下载PDF
1987~2007年上海市土地利用覆被变化研究 被引量:3
3
作者 郭家秀 胡小猛 《上海师范大学学报(自然科学版)》 2010年第1期105-110,共6页
采用"支持向量机分类"方法对上海市1987年和2007年的TM影像进行了解译.结果显示:近20年来的区域土地利用覆被变化表现为耕地和未利用土地的面积在不断减少,城乡建设用地、林地、草地、水域面积在不断增加;在空间格局的变化上... 采用"支持向量机分类"方法对上海市1987年和2007年的TM影像进行了解译.结果显示:近20年来的区域土地利用覆被变化表现为耕地和未利用土地的面积在不断减少,城乡建设用地、林地、草地、水域面积在不断增加;在空间格局的变化上,城乡建设用地的扩张虽然以从中心城区向外摊开方式为主,但沿交通轴向和卫星城镇点上的外拓发展趋势也非常明显;林地的增加主要集中于环城绿化带、森林公园、城市公园、居住区绿化等区域.根据区域社会-经济-生态复合系统变化与区域土地利用覆被结构变化间的相关性,利用"主成分分析法"和Excel统计功能,建立了两者间的线性相关模型.论文的研究结论可为政府部门科学合理地使用和管理上海有限的土地资源提供参考. 展开更多
关键词 土地利用覆被变化 遥感解译 支持向量机分类法 主成分分析法 相关性分析
下载PDF
基于遥感的合肥市建成区时空变化分析 被引量:1
4
作者 刘妙佳 方刚 《西昌学院学报(自然科学版)》 2021年第4期51-56,共6页
以合肥市为研究区,以6期Landsat卫星影像为数据源,采用目视解译法和支持向量机法对合肥市遥感影像进行监督分类与精度评价,在此基础上结合紧凑度指数、分形维数、重心转移指数等指标分析合肥市建成区的时空变化。研究结果表明:(1)1995—... 以合肥市为研究区,以6期Landsat卫星影像为数据源,采用目视解译法和支持向量机法对合肥市遥感影像进行监督分类与精度评价,在此基础上结合紧凑度指数、分形维数、重心转移指数等指标分析合肥市建成区的时空变化。研究结果表明:(1)1995—2013年合肥市建成区扩展以边缘式扩张形式为主,由主城区边缘向外以发射状延伸;2013—2018年建成区扩展主要在区域内部扩张即"填充式扩张";2018—2020年建成区扩展以"飞地式扩张"为主。(2)建成区的重心向西和西南方向转移(其中2013—2020年重心向北转移)。(3)合肥市建成区面积一直处于增加状态,增速较快,从1995年的129.64 km^(2)增加到2020年的884.03 km^(2)。 展开更多
关键词 Landsat卫星影像 支持向量机分类法 建成区 时空变化分析 合肥市
下载PDF
基于Sentinel-2数据的郑州市中心城区遥感信息提取
5
作者 董煜硕 张莹莹 +3 位作者 马若冰 高鑫宇 杨威 李格 《地理科学研究》 2023年第2期241-251,共11页
随着城市化进程的不断发展,城市下垫面及自然水体受到了破坏,与人类居住用地不相协调,土地的利用方式对洪涝灾害具有放大化的影响,并逐渐成为城市的隐患问题。本文以郑州市中心城区为例,采用10 m分辨率的Sentinel-2遥感数据,对获取的MN... 随着城市化进程的不断发展,城市下垫面及自然水体受到了破坏,与人类居住用地不相协调,土地的利用方式对洪涝灾害具有放大化的影响,并逐渐成为城市的隐患问题。本文以郑州市中心城区为例,采用10 m分辨率的Sentinel-2遥感数据,对获取的MNDWI指数进行预处理,然后进行阈值分割提取水体面积分布,并在此基础上,分别用支持向量机分类法、决策树分类法、随机森林分类法进行城市土地利用类型信息的提取,通过Kappa系数和混淆矩阵对比其精度。分别提取城市土地利用和水体面积信息并进行对比,对郑州市中心城区的土地利用进行研究分析,为城市的合理规划提供建议。结果显示:1) 采用阈值分割法提取水体的总体精度百分比为96.98,Kappa系数为0.94,精度较高;2) 随机森林分类法、决策树分类、支持向量机分类法的土地利用分类的Kappa系数分别为0.91、0.79、0.76,总体精度分别为93.38%、84.25%、82.38%,其中随机森林分类法的土地利用信息提取的Kappa系数及精度水平最高,准确性最高;3) 郑州市中心城区的水体面积占城市土地利用总面积的3.79%,占比较低;而城市居民用地和其他用地两类面积的占比较高,超过75%,居民建设用地和生态用地较为矛盾,城区的土地规划较不合理。采用Sentinel-2遥感数据提取郑州市中心城区的数据可以有效分析土地利用面积占比,据此可以为郑州市的土地利用规划提供数据支撑,协调居住与自然用地的比例,有效改善下垫面对地表水资源的调节作用,从而减少城市内涝的发生,不断推进郑州生态宜居型城市的建设。 展开更多
关键词 Sentinel-2 土地利用 森林分类 决策树分类 支持向量机分类法
下载PDF
Intrusion detection using rough set classification 被引量:16
6
作者 张连华 张冠华 +2 位作者 郁郎 张洁 白英彩 《Journal of Zhejiang University Science》 EI CSCD 2004年第9期1076-1086,共11页
Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learn... Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learning algorithm, is used to rank the features extracted for detecting intrusions and generate intrusion detection models. Feature ranking is a very critical step when building the model. RSC performs feature ranking before generating rules, and converts the feature ranking to minimal hitting set problem addressed by using genetic algorithm (GA). This is done in classical approaches using Support Vector Machine (SVM) by executing many iterations, each of which removes one useless feature. Compared with those methods, our method can avoid many iterations. In addition, a hybrid genetic algorithm is proposed to increase the convergence speed and decrease the training time of RSC. The models generated by RSC take the form of'IF-THEN' rules, which have the advantage of explication. Tests and comparison of RSC with SVM on DARPA benchmark data showed that for Probe and DoS attacks both RSC and SVM yielded highly accurate results (greater than 99% accuracy on testing set). 展开更多
关键词 Intrusion detection Rough set classification Support vector machine Genetic algorithm
下载PDF
A SVM Based Text Steganalysis Algorithm for Spacing Coding 被引量:2
7
作者 YANG Yu 《China Communications》 SCIE CSCD 2014年第A01期108-113,共6页
Group distance coding is suitable for secret communication covered by printed documents. However there is no effective method against it. The study found that the hiding method will make group distances of text lines ... Group distance coding is suitable for secret communication covered by printed documents. However there is no effective method against it. The study found that the hiding method will make group distances of text lines coverage on specified values, and make variances of group distances among N-Window text lines become small. Inspired by the discovery, the research brings out a Support Vector Machine (SVM) based steganalysis algorithm. To avoid the disturbance of large difference among words length from same line, the research only reserves samples whose occurrence-frequencies are ± 10dB of the maximum frequency. The results show that the correct rate of the SVM classifier is higher than 90%. 展开更多
关键词 text steganalysis SVM steganalysis space-coding detecting
下载PDF
基于Landsat OLI数据的不透水面提取方法对比研究——以长株潭城市群核心区为例 被引量:3
8
作者 张维 李军 《安徽农学通报》 2019年第21期83-85,102,共4页
不透水面的分布规模和空间格局是影响区域生态系统和环境变化的重要指标。该研究基于LandsatOLI遥感影像,以长株潭主城区核心区为研究区域,进行了归一化建筑指数法、归一化差值不透水面指数法和最小噪声分离结合支持向量机分类法3种方... 不透水面的分布规模和空间格局是影响区域生态系统和环境变化的重要指标。该研究基于LandsatOLI遥感影像,以长株潭主城区核心区为研究区域,进行了归一化建筑指数法、归一化差值不透水面指数法和最小噪声分离结合支持向量机分类法3种方法提取不透水面信息的综合比较。结果表明:MNF结合SVM方法步骤相对较多,在选取端元和去除水体掩膜等方面都存在人工干涉,受人工影响较大;归一化建筑指数法虽然能快速地提取不透水面,但存在裸土与不透水面混淆的情况;而归一化差值不透水面指数法可有效区分裸土与不透水面,提取精度高于其他2种方法。最终选择归一化差值不透水面指数法,提取研究区2013年、2015年的不透水面信息,分析了其空间格局和扩展情况。 展开更多
关键词 不透水面 归一化建筑指数法(NDBI) 归一化差值不透水面指数法(NDISI) 最小噪声分离(MNF)结合支持向量(SVM)分类法 LANDSAT OLI
下载PDF
GA-SVC model and application of comprehensive evaluation of coal mine essential safety management
9
作者 Zhi-Jun WANG Rui-Lin ZHANG Wen-Ting SONG 《Journal of Coal Science & Engineering(China)》 2013年第2期226-230,共5页
In order to evaluate the level of the coal mine essential safety management, the comprehensive index system was designed base on the connotation principle of the mine essential safety management. Due to the disadvanta... In order to evaluate the level of the coal mine essential safety management, the comprehensive index system was designed base on the connotation principle of the mine essential safety management. Due to the disadvantage of index weight setting by subjective idea in the former method, support vector classification algorithm was used to assess the level of coal mine essential safety management. According to the advantages of the global search capability of the genetic algorithm, support vector classification parameters optimization method was proposed based on genetic algorithm, and genetic algorithm-support vector classification model of coal mine essential safety management assessment was established. Learning samples were constructed on the basis of former data of mine essential safety management evaluation. The test results show that the genetic algorithm-support vector classification model has higher evaluation accuracy and good generalization ability, and the advantage of no need for artificial setting of index weight and absence of the subjective factors influence to evaluation results. 展开更多
关键词 mine safety essential safety management comprehensive assessment support vector classification genetic algorithm
下载PDF
Using Spatial Data Mining to Predict the Solvability Space of Preconditioned Sparse Linear Systems
10
作者 Shuting Xu SangBaeKim Jun Zhang 《Computer Technology and Application》 2016年第3期139-148,共10页
The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods [1] are considered th... The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods [1] are considered the preferred methods. Selecting an effective preconditioner with appropriate parameters for a specific sparse linear system presents a challenging task for many application scientists and engineers who have little knowledge of preconditioned iterative methods. The purpose of this paper is to predict the parameter solvability space of the preconditioners with two or more parameters. The parameter solvability space is usually irregular, however, in many situations it shows spatial locality, i.e. the parameter locations that are closer in parameter space are more likely to have similar solvability. We propose three spatial data mining methods to predict the solvability of ILUT which make usage of spatial locality in different ways. The three methods are MSC (multi-points SVM classifier), OSC (overall SVM classifier), and OSAC (overall spatial autoregressive classifier). The experimental results show that both MSC and OSAC can obtain 90% accuracy in prediction, but OSAC is much simpler to implement. We focus our work on ILUT preconditioner [2], but the proposed strategies should be applicable to other preconditioners with two or more parameters. 展开更多
关键词 PRECONDITIONER PREDICTION SOLVABILITY SVM spatial autoregressive model.
下载PDF
A Transmission Line Fault Classification Approach by Support Vector Machines
11
作者 A.M. Ibrahim A.Y. Abdelaziz S.F. Mekhamer M. Ramadan 《Journal of Energy and Power Engineering》 2011年第3期268-274,共7页
This paper presents an approach for shunt faults detection and classification in transmission line using Support Vector Machine (SVM). The paper compares between using three line post-fault current samples for one-h... This paper presents an approach for shunt faults detection and classification in transmission line using Support Vector Machine (SVM). The paper compares between using three line post-fault current samples for one-half cycle and one-fourth cycle from the inception of the fault as inputs for SVM. Two SVMs are used, first SVMabc is used for faulty phase detection and second SVMg is used for ground detection. SVMs with polynomial kernel with different degrees are used to obtain the best classification score. The classification test results show that the proposed method is accurate and reliable. 展开更多
关键词 Transmission line protection fault detection fault classification support vector machine.
下载PDF
NEW ROBUST UNSUPERVISED SUPPORT VECTOR MACHINES
12
作者 Kun ZHAO Mingyu ZHANG ~ Naiyang DENG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第3期466-476,共11页
This paper proposes robust version to unsupervised classification algorithm based on modified robust version of primal problem of standard SVMs, which directly relaxes it with label variables to a semi-definite progra... This paper proposes robust version to unsupervised classification algorithm based on modified robust version of primal problem of standard SVMs, which directly relaxes it with label variables to a semi-definite programming. Numerical results confirm the robustness of the proposed method. 展开更多
关键词 ROBUST semi-definite programming support vector machines unsupervised learning
原文传递
A HYBRID PSO-SA OPTIMIZING APPROACH FOR SVM MODELS IN CLASSIFICATION
13
作者 HUIYAN JIANG LINGBO ZOU 《International Journal of Biomathematics》 2013年第5期189-206,共18页
Support vector machine (SVM) is a widely used tool in the field of image processing and pattern recognition. However, the parameters selection of SVMs is a dilemma in disease identification and clinical diagnosis. T... Support vector machine (SVM) is a widely used tool in the field of image processing and pattern recognition. However, the parameters selection of SVMs is a dilemma in disease identification and clinical diagnosis. This paper proposed an improved parameter optimization method based on traditional particle swarm optimization (PSO) algorithm by changing the fitness function in the traditional evolution process of SVMs. Then, this PSO method was combined with simulated annealing global searching algorithm to avoid local convergence that traditional PSO algorithms usually run into. And this method has achieved better results which reflected in the receiver-operating characteristic curves in medical images classification and has gained considerable identification accuracy in clinical disease detection. 展开更多
关键词 Support vector machine disease detection global optimization.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部