期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
永磁同步电机转子位置提取近似分类支持向量机灰色预测方法 被引量:5
1
作者 王磊 李颖晖 +2 位作者 祝晓辉 朱喜华 张敬 《电力系统保护与控制》 EI CSCD 北大核心 2010年第23期97-102,共6页
针对单一灰色预测方法下磁特性曲线建模对电机不同运行状态区分能力差、概括性不强,由此导致估计误差较大的问题,提出基于支持向量机分类细化特性曲线区,提高用以灰色GM(1,1)预测建模数据指数光滑度,改善转子信息估计精度的灰色近似支... 针对单一灰色预测方法下磁特性曲线建模对电机不同运行状态区分能力差、概括性不强,由此导致估计误差较大的问题,提出基于支持向量机分类细化特性曲线区,提高用以灰色GM(1,1)预测建模数据指数光滑度,改善转子信息估计精度的灰色近似支持向量机分类预测算法。将此预测方法用于永磁同步电机的矢量控制当中,数值仿真结果证明,引入先期近似支持向量机分类算法后的转子位置灰色预测法可以在较少测试数据集上达到较高的估计精度。 展开更多
关键词 永磁同步电 转子位置自检测 灰色近似支持向量分类预测算法 无传感器控制
下载PDF
基于DE-SVM的穴盘苗自动取苗机构故障诊断方法
2
作者 刘健 王俊 金鑫 《农机化研究》 北大核心 2023年第6期34-40,共7页
为解决穴盘苗取苗机构早期机械故障识别困难的问题,提高故障诊断的准确率,提出一种基于DE-SVM的穴盘自动苗取苗机构故障诊断方法。首先,采用经验模态分解(Empirical Mode Decomposition,EMD)、变分模态分解(Variational Mode Decomposit... 为解决穴盘苗取苗机构早期机械故障识别困难的问题,提高故障诊断的准确率,提出一种基于DE-SVM的穴盘自动苗取苗机构故障诊断方法。首先,采用经验模态分解(Empirical Mode Decomposition,EMD)、变分模态分解(Variational Mode Decomposition,VMD)等预处理方法挖掘潜藏在取苗机构原始振动信号中的故障信息;其次,分别从原始振动信号和预处理信号中提取时域统计特征,再运用距离评估(Distance Evaluation,DE)技术获得表征取苗机构故障的敏感时域统计特征,构建特征向量序列;最后,结合支持向量机(Support Vector Machine,SVM)分类算法对取苗机构运行状况进行识别。室内试验结果表明:此方法可有效区分取苗机构滑道故障、凸轮故障、弹簧故障和正常状况等4种工况,具有运算复杂度低、识别准确率高的优点,可为自动移栽取苗机构工况监测提供一种参考。 展开更多
关键词 自动取苗 变分模态分解 距离评估技术 支持向量机分类算法 故障诊断
下载PDF
基于SVM算法的PQ型控制逆变器出口故障分类 被引量:1
3
作者 刘全越 雷诚诚 王泉 《通信电源技术》 2018年第3期45-47,共3页
随着全球清洁能源的广泛应用,含有分布式能源的电网将会是未来配电网的主要供电形式。分布式能源常常经PQ控制型逆变器件接入配电网,由于控制模式的应用,对于分布式电源并网条件下,故障下暂态过程将会发生新的变化。现有研究主要集中于... 随着全球清洁能源的广泛应用,含有分布式能源的电网将会是未来配电网的主要供电形式。分布式能源常常经PQ控制型逆变器件接入配电网,由于控制模式的应用,对于分布式电源并网条件下,故障下暂态过程将会发生新的变化。现有研究主要集中于馈线保护和DG保护,而针对PQ控制型微源出口故障选相的研究则非常有限。文中首先分析PQ控制型逆变器的数学模型,故障电流特性及控制器特征状态变量故障特性,在此基础之上,形成PQ控制型逆变器故障特征矩阵,然后,进一步分析粒子群算法改进的多分类支持向量机算法流程,最后,在Digsilent软件进行算例仿真计算,验证了所提方法的可行性和有效性。 展开更多
关键词 故障分类 粒子群算法改进的多分类支持向量 PQ控制型微源
下载PDF
非侵入式负荷动态识别方法的研究及工程应用
4
作者 刘春蕾 庞鹏飞 +3 位作者 石纹赫 孔令号 黄洵 戚军 《电气工程学报》 CSCD 2023年第3期307-314,共8页
随着非侵入式负荷监测技术应用场景不断扩展,负荷类型日趋多样化,基于单层特征的静态识别方法需要构造更加全面、复杂的特征,难以兼顾负荷识别的准确度及速度。提出一种基于多层特征组的动态识别方法,综合考虑不同负荷特征提取的采样频... 随着非侵入式负荷监测技术应用场景不断扩展,负荷类型日趋多样化,基于单层特征的静态识别方法需要构造更加全面、复杂的特征,难以兼顾负荷识别的准确度及速度。提出一种基于多层特征组的动态识别方法,综合考虑不同负荷特征提取的采样频率、监测窗口宽度、计算复杂度和负荷特征存储量等构建分层特征组,针对负荷群中不同的负荷类型提取不同的特征组作为分类特征以降低特征的综合提取代价,最后基于支持向量机多分类算法实现按需识别负荷类型。BLUED数据库的仿真对比分析和实际某工厂的工程测试结果表明,基于多层特征组的动态识别方法不仅能够提高负荷的综合识别速度,也能提升相似负荷的识别准确度,在负荷相似及投切频繁的场景下能够兼顾负荷识别准确度和速度,具有较好的工程适用性。 展开更多
关键词 非侵入式负荷监测 负荷特征分层 动态识别 支持向量分类算法
下载PDF
Intrusion detection using rough set classification 被引量:16
5
作者 张连华 张冠华 +2 位作者 郁郎 张洁 白英彩 《Journal of Zhejiang University Science》 EI CSCD 2004年第9期1076-1086,共11页
Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learn... Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learning algorithm, is used to rank the features extracted for detecting intrusions and generate intrusion detection models. Feature ranking is a very critical step when building the model. RSC performs feature ranking before generating rules, and converts the feature ranking to minimal hitting set problem addressed by using genetic algorithm (GA). This is done in classical approaches using Support Vector Machine (SVM) by executing many iterations, each of which removes one useless feature. Compared with those methods, our method can avoid many iterations. In addition, a hybrid genetic algorithm is proposed to increase the convergence speed and decrease the training time of RSC. The models generated by RSC take the form of'IF-THEN' rules, which have the advantage of explication. Tests and comparison of RSC with SVM on DARPA benchmark data showed that for Probe and DoS attacks both RSC and SVM yielded highly accurate results (greater than 99% accuracy on testing set). 展开更多
关键词 Intrusion detection Rough set classification Support vector machine Genetic algorithm
下载PDF
A SVM Based Text Steganalysis Algorithm for Spacing Coding 被引量:2
6
作者 YANG Yu 《China Communications》 SCIE CSCD 2014年第A01期108-113,共6页
Group distance coding is suitable for secret communication covered by printed documents. However there is no effective method against it. The study found that the hiding method will make group distances of text lines ... Group distance coding is suitable for secret communication covered by printed documents. However there is no effective method against it. The study found that the hiding method will make group distances of text lines coverage on specified values, and make variances of group distances among N-Window text lines become small. Inspired by the discovery, the research brings out a Support Vector Machine (SVM) based steganalysis algorithm. To avoid the disturbance of large difference among words length from same line, the research only reserves samples whose occurrence-frequencies are ± 10dB of the maximum frequency. The results show that the correct rate of the SVM classifier is higher than 90%. 展开更多
关键词 text steganalysis SVM steganalysis space-coding detecting
下载PDF
GA-SVC model and application of comprehensive evaluation of coal mine essential safety management
7
作者 Zhi-Jun WANG Rui-Lin ZHANG Wen-Ting SONG 《Journal of Coal Science & Engineering(China)》 2013年第2期226-230,共5页
In order to evaluate the level of the coal mine essential safety management, the comprehensive index system was designed base on the connotation principle of the mine essential safety management. Due to the disadvanta... In order to evaluate the level of the coal mine essential safety management, the comprehensive index system was designed base on the connotation principle of the mine essential safety management. Due to the disadvantage of index weight setting by subjective idea in the former method, support vector classification algorithm was used to assess the level of coal mine essential safety management. According to the advantages of the global search capability of the genetic algorithm, support vector classification parameters optimization method was proposed based on genetic algorithm, and genetic algorithm-support vector classification model of coal mine essential safety management assessment was established. Learning samples were constructed on the basis of former data of mine essential safety management evaluation. The test results show that the genetic algorithm-support vector classification model has higher evaluation accuracy and good generalization ability, and the advantage of no need for artificial setting of index weight and absence of the subjective factors influence to evaluation results. 展开更多
关键词 mine safety essential safety management comprehensive assessment support vector classification genetic algorithm
下载PDF
NEW ROBUST UNSUPERVISED SUPPORT VECTOR MACHINES
8
作者 Kun ZHAO Mingyu ZHANG ~ Naiyang DENG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第3期466-476,共11页
This paper proposes robust version to unsupervised classification algorithm based on modified robust version of primal problem of standard SVMs, which directly relaxes it with label variables to a semi-definite progra... This paper proposes robust version to unsupervised classification algorithm based on modified robust version of primal problem of standard SVMs, which directly relaxes it with label variables to a semi-definite programming. Numerical results confirm the robustness of the proposed method. 展开更多
关键词 ROBUST semi-definite programming support vector machines unsupervised learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部