针对开放式WSN连接到互联网上的智能设备数量和多样性迅速增加而导致的入侵检测误报和入侵检测准确性等问题,提出一种基于增强型支持向量机(Enhanced Support Vector Machine,ESVM)分类和遗传算法(Genetic Algorithm,GA)特征选择的智能...针对开放式WSN连接到互联网上的智能设备数量和多样性迅速增加而导致的入侵检测误报和入侵检测准确性等问题,提出一种基于增强型支持向量机(Enhanced Support Vector Machine,ESVM)分类和遗传算法(Genetic Algorithm,GA)特征选择的智能轻量级物联网入侵检测算法。该算法进行预处理以将入侵数据集的复杂流量转换为SVM的可读格式,采用交叉和变异算子智能选择信息量最大的流量特征以降低无线网络流量的维数,使用ESVM算法执行分类以更有效地识别入侵攻击检测。实现结果表明,该算法在选择最优流量和提高检测精度方面均有明显改善。展开更多
为提升变压器故障预测的准确性,提出了一种基于灰狼(Grey Wolf Optimization,GWO)算法优化支持向量机(Support Vector Machine,SVM)的变压器故障预测方法。采用GWO算法对SVM进行优化,建立了基于GWO-SVM变压器油中溶解特征气体预测模型,...为提升变压器故障预测的准确性,提出了一种基于灰狼(Grey Wolf Optimization,GWO)算法优化支持向量机(Support Vector Machine,SVM)的变压器故障预测方法。采用GWO算法对SVM进行优化,建立了基于GWO-SVM变压器油中溶解特征气体预测模型,根据油中溶解特征气体随时间变化的特点,通过求取嵌入维数确定模型输入量。文章采用实际运行变压器的油中溶解气体分析(Dissolved Gas Analysis,DGA)数据进行仿真分析,并与其他预测方法对比,结果表明,GWO-SVM模型对H 2预测平均相对误差和均方根误差分别为4.38%和9.48μL/L,预测精度高于其他方法。在变压器油中溶解特征气体含量预测的基础上,利用IEC三比值法进行变压器故障诊断,诊断结果与变压器实际故障一致,验证了变压器故障预测方法的实用性和有效性。展开更多
文摘针对开放式WSN连接到互联网上的智能设备数量和多样性迅速增加而导致的入侵检测误报和入侵检测准确性等问题,提出一种基于增强型支持向量机(Enhanced Support Vector Machine,ESVM)分类和遗传算法(Genetic Algorithm,GA)特征选择的智能轻量级物联网入侵检测算法。该算法进行预处理以将入侵数据集的复杂流量转换为SVM的可读格式,采用交叉和变异算子智能选择信息量最大的流量特征以降低无线网络流量的维数,使用ESVM算法执行分类以更有效地识别入侵攻击检测。实现结果表明,该算法在选择最优流量和提高检测精度方面均有明显改善。
文摘为提升变压器故障预测的准确性,提出了一种基于灰狼(Grey Wolf Optimization,GWO)算法优化支持向量机(Support Vector Machine,SVM)的变压器故障预测方法。采用GWO算法对SVM进行优化,建立了基于GWO-SVM变压器油中溶解特征气体预测模型,根据油中溶解特征气体随时间变化的特点,通过求取嵌入维数确定模型输入量。文章采用实际运行变压器的油中溶解气体分析(Dissolved Gas Analysis,DGA)数据进行仿真分析,并与其他预测方法对比,结果表明,GWO-SVM模型对H 2预测平均相对误差和均方根误差分别为4.38%和9.48μL/L,预测精度高于其他方法。在变压器油中溶解特征气体含量预测的基础上,利用IEC三比值法进行变压器故障诊断,诊断结果与变压器实际故障一致,验证了变压器故障预测方法的实用性和有效性。