Natural gas load forecasting is a key process to the efficient operation of pipeline network. An accurate forecast is required to guarantee a balanced network operation and ensure safe gas supply at a minimum cost.Mac...Natural gas load forecasting is a key process to the efficient operation of pipeline network. An accurate forecast is required to guarantee a balanced network operation and ensure safe gas supply at a minimum cost.Machine learning techniques have been increasingly applied to load forecasting. A novel regression technique based on the statistical learning theory, support vector machines (SVM), is investigated in this paper for natural gas shortterm load forecasting. SVM is based on the principle of structure risk minimization as opposed to the principle of empirical risk minimization in conventional regression techniques. Using a data set with 2 years load values we developed prediction model using SVM to obtain 31 days load predictions. The results on city natural gas short-term load forecasting show that SVM provides better prediction accuracy than neural network. The software package natural gas pipeline networks simulation and load forecasting (NGPNSLF) based on support vector regression prediction has been developed, which has also been applied in practice.展开更多
The application of support vector machines to forecasting problems is becoming popular, lately. Several comparisons between neural networks trained with error backpropagation and support vector machines have shown adv...The application of support vector machines to forecasting problems is becoming popular, lately. Several comparisons between neural networks trained with error backpropagation and support vector machines have shown advantage for the latter in different domains of application. However, some difficulties still deteriorate the performance of the support vector machines. The main one is related to the setting of the hyperparameters involved in their training. Techniques based on meta-heuristics have been employed to determine appropriate values for those hyperparameters. However, because of the high noneonvexity of this estimation problem, which makes the search for a good solution very hard, an approach based on Bayesian inference, called relevance vector machine, has been proposed more recently. The present paper aims at investigating the suitability of this new approach to the short-term load forecasting problem.展开更多
文摘Natural gas load forecasting is a key process to the efficient operation of pipeline network. An accurate forecast is required to guarantee a balanced network operation and ensure safe gas supply at a minimum cost.Machine learning techniques have been increasingly applied to load forecasting. A novel regression technique based on the statistical learning theory, support vector machines (SVM), is investigated in this paper for natural gas shortterm load forecasting. SVM is based on the principle of structure risk minimization as opposed to the principle of empirical risk minimization in conventional regression techniques. Using a data set with 2 years load values we developed prediction model using SVM to obtain 31 days load predictions. The results on city natural gas short-term load forecasting show that SVM provides better prediction accuracy than neural network. The software package natural gas pipeline networks simulation and load forecasting (NGPNSLF) based on support vector regression prediction has been developed, which has also been applied in practice.
文摘The application of support vector machines to forecasting problems is becoming popular, lately. Several comparisons between neural networks trained with error backpropagation and support vector machines have shown advantage for the latter in different domains of application. However, some difficulties still deteriorate the performance of the support vector machines. The main one is related to the setting of the hyperparameters involved in their training. Techniques based on meta-heuristics have been employed to determine appropriate values for those hyperparameters. However, because of the high noneonvexity of this estimation problem, which makes the search for a good solution very hard, an approach based on Bayesian inference, called relevance vector machine, has been proposed more recently. The present paper aims at investigating the suitability of this new approach to the short-term load forecasting problem.