随着钍基熔盐堆核能系统(Thorium Molten Salt Reactor Nuclear Energy System,TMSR)由实验堆向研究堆、示范堆及商用堆发展,其轴系演变为由液下轴承支承的细长柔性转子结构。高温熔盐泵是钍基核能系统的主要动力部件,是TMSR的心脏设备...随着钍基熔盐堆核能系统(Thorium Molten Salt Reactor Nuclear Energy System,TMSR)由实验堆向研究堆、示范堆及商用堆发展,其轴系演变为由液下轴承支承的细长柔性转子结构。高温熔盐泵是钍基核能系统的主要动力部件,是TMSR的心脏设备。熔盐泵的运行稳定性和可靠性取决于液下轴承的支撑特性。本文采用数值模拟对液下轴承进行理论计算分析,并结合试验研究了不同偏心率对液下轴承支撑特性的影响。结果显示:随着转速增大,液下轴承的偏心率不断减小;随着偏心率的增大,液下轴承支撑的正交刚度和阻尼不断增大,交叉刚度和阻尼的数值也不断增大,液下轴承的最小液膜厚度不断减小。当偏心率大于0.6时,由于最小液膜厚度较薄,液下轴承的压力以零和零梯度结束。此时液下轴承在实际运转中存在液膜失效导致液下轴承磨损严重,此结果在试验中得到了验证。本文研究成果为超高温长轴熔盐泵液下轴承的设计提供了理论指导和试验数据支撑。展开更多
针对口径为300 mm的一体化铝合金反射镜进行了拓扑优化设计,在反射镜光轴方向的自重载荷下,以整体柔度作为约束,反射镜最小体积作为目标进行迭代优化,得到了拓扑优化结果模型,根据其特征建立了实体模型并进行了参数优化,最终得到了总质...针对口径为300 mm的一体化铝合金反射镜进行了拓扑优化设计,在反射镜光轴方向的自重载荷下,以整体柔度作为约束,反射镜最小体积作为目标进行迭代优化,得到了拓扑优化结果模型,根据其特征建立了实体模型并进行了参数优化,最终得到了总质量为2.08kg、面形均方根RMS(Root Mean Square)为5.9nm、轻量化率为70%的一体化反射镜结构。通过参数优化,结合与对比结构的对比验证了拓扑结构特征的有效性,并进行了支撑特性分析。中心六边形的支撑结构和半封闭的结构在自重工况下对面形精度的提升有极大贡献。中心六边形结构存在最佳支撑位置,即正六边形高度与直径比值为0.26。展开更多
In considering the theory of structural dynamic optimization design, a design method of the structural style of ship composite brace with rigid vibration isolation mass was studied. Two kinds of structural dynamic opt...In considering the theory of structural dynamic optimization design, a design method of the structural style of ship composite brace with rigid vibration isolation mass was studied. Two kinds of structural dynamic optimization formulations minimizing the vibration acceleration of the non-pressure hull on the restraining condition of the gross weight of the ship cabin were established: 1) dynamic optimization of the sectional dimensions of the rigid vibration isolation mass in the composite brace; 2) dynamic optimization of the arranging position of the rigid vibration isolation mass. Through the optimization results, sectional dimensions and the arranging position of the rigid vibration isolation mass with better performance in reducing vibration were gained, and some reference was provided for practical engineering designs as well as enrichment of the design method of a novel ship vibration-isolation brace.展开更多
In order to investigate the effects of probe support on the stall characteristics of micro compressors, an experiment was carried out on a large-scale low-speed research compressor according to the principle of geomet...In order to investigate the effects of probe support on the stall characteristics of micro compressors, an experiment was carried out on a large-scale low-speed research compressor according to the principle of geometric similarity. A cylindrical probe support intruding to 50% blade span was mounted at 50% chord upstream from the rotor blade leading edge. The static pressure rise characteristic of the compressor is measured, with and without the probe support respectively. The dynamic compressor behavior from pre-stall to full stall was also measured. The results indicate that the stability margin of the compressor is lowered after installing the probe support. The stall inception is aroused by modal wave disturbances. The disturbances developed into two stall cells smoothly before installing the probe support, while the disturbances first developed into a single stall cell then splitting into two stall cells after installing the probe support. The presence of probe support lowers the initial intensity of the rotating stall of the compressor, while it doesn't alter the intensity of the rotation stall after the compressor enters into full stall.展开更多
文摘随着钍基熔盐堆核能系统(Thorium Molten Salt Reactor Nuclear Energy System,TMSR)由实验堆向研究堆、示范堆及商用堆发展,其轴系演变为由液下轴承支承的细长柔性转子结构。高温熔盐泵是钍基核能系统的主要动力部件,是TMSR的心脏设备。熔盐泵的运行稳定性和可靠性取决于液下轴承的支撑特性。本文采用数值模拟对液下轴承进行理论计算分析,并结合试验研究了不同偏心率对液下轴承支撑特性的影响。结果显示:随着转速增大,液下轴承的偏心率不断减小;随着偏心率的增大,液下轴承支撑的正交刚度和阻尼不断增大,交叉刚度和阻尼的数值也不断增大,液下轴承的最小液膜厚度不断减小。当偏心率大于0.6时,由于最小液膜厚度较薄,液下轴承的压力以零和零梯度结束。此时液下轴承在实际运转中存在液膜失效导致液下轴承磨损严重,此结果在试验中得到了验证。本文研究成果为超高温长轴熔盐泵液下轴承的设计提供了理论指导和试验数据支撑。
文摘针对口径为300 mm的一体化铝合金反射镜进行了拓扑优化设计,在反射镜光轴方向的自重载荷下,以整体柔度作为约束,反射镜最小体积作为目标进行迭代优化,得到了拓扑优化结果模型,根据其特征建立了实体模型并进行了参数优化,最终得到了总质量为2.08kg、面形均方根RMS(Root Mean Square)为5.9nm、轻量化率为70%的一体化反射镜结构。通过参数优化,结合与对比结构的对比验证了拓扑结构特征的有效性,并进行了支撑特性分析。中心六边形的支撑结构和半封闭的结构在自重工况下对面形精度的提升有极大贡献。中心六边形结构存在最佳支撑位置,即正六边形高度与直径比值为0.26。
基金Supported by the Shipbuilding Industry of National Defense Science and Technology Research Projects in Advance (153010110031)
文摘In considering the theory of structural dynamic optimization design, a design method of the structural style of ship composite brace with rigid vibration isolation mass was studied. Two kinds of structural dynamic optimization formulations minimizing the vibration acceleration of the non-pressure hull on the restraining condition of the gross weight of the ship cabin were established: 1) dynamic optimization of the sectional dimensions of the rigid vibration isolation mass in the composite brace; 2) dynamic optimization of the arranging position of the rigid vibration isolation mass. Through the optimization results, sectional dimensions and the arranging position of the rigid vibration isolation mass with better performance in reducing vibration were gained, and some reference was provided for practical engineering designs as well as enrichment of the design method of a novel ship vibration-isolation brace.
基金funded by the National Natural Science Foundation of China(Grant No.51161130525 and 51136003)the 111 Project,No.B07009
文摘In order to investigate the effects of probe support on the stall characteristics of micro compressors, an experiment was carried out on a large-scale low-speed research compressor according to the principle of geometric similarity. A cylindrical probe support intruding to 50% blade span was mounted at 50% chord upstream from the rotor blade leading edge. The static pressure rise characteristic of the compressor is measured, with and without the probe support respectively. The dynamic compressor behavior from pre-stall to full stall was also measured. The results indicate that the stability margin of the compressor is lowered after installing the probe support. The stall inception is aroused by modal wave disturbances. The disturbances developed into two stall cells smoothly before installing the probe support, while the disturbances first developed into a single stall cell then splitting into two stall cells after installing the probe support. The presence of probe support lowers the initial intensity of the rotating stall of the compressor, while it doesn't alter the intensity of the rotation stall after the compressor enters into full stall.