Classical beat phenomenon has been observed in most combined systems. The focus of this paper is to provide a better understanding of this phenomenon in an offshore pile-supported pipeline system. The beat phenomeon i...Classical beat phenomenon has been observed in most combined systems. The focus of this paper is to provide a better understanding of this phenomenon in an offshore pile-supported pipeline system. The beat phenomeon is caused by the coupling movement of the pipeline and its vertical pile support under certain conditions. It can induce excessive vibration and cause fatigue failure at pipe elbow. However, in some circumstances it does not exist. Numerical results in both frequency and time domains are presented to elucidate this phenomenon in a combined pipeline system. The conclusions of this paper could give constructive guidance to future design of simply supported pipeline systems.展开更多
Increasing size of wind turbine and deep water deployment have raised the issue of appropriate selection of the most suitable support structure to make offshore wind energy cost competitive.The paper presents an optim...Increasing size of wind turbine and deep water deployment have raised the issue of appropriate selection of the most suitable support structure to make offshore wind energy cost competitive.The paper presents an optimization methodology for decision making process of bottom mounted supports of offshore wind turbines (OWTs) through reasonable engineering attributes derivation.Mathematic models of support structures are reduced by the generalized single-degree-of-freedom theory with relatively fewer structural parameters.Soft-stiff design optimization based on dynamic properties of OWTs is performed for monopile and lattice supports with different wind turbines,water depth and hub height.Attributes of support structures,wind turbines and environment conditions are applied in the multi-criteria decision making method——TOPSIS for benchmarking of those options.The results illustrate the effectiveness of the proposed optimazation methodology combined with economical and environmental attributes together.展开更多
文摘Classical beat phenomenon has been observed in most combined systems. The focus of this paper is to provide a better understanding of this phenomenon in an offshore pile-supported pipeline system. The beat phenomeon is caused by the coupling movement of the pipeline and its vertical pile support under certain conditions. It can induce excessive vibration and cause fatigue failure at pipe elbow. However, in some circumstances it does not exist. Numerical results in both frequency and time domains are presented to elucidate this phenomenon in a combined pipeline system. The conclusions of this paper could give constructive guidance to future design of simply supported pipeline systems.
基金Supported by the National Natural Science Foundation of China (No.51309209,51279186) and the National Basic Research Program of China (No.2011CB013704).
文摘Increasing size of wind turbine and deep water deployment have raised the issue of appropriate selection of the most suitable support structure to make offshore wind energy cost competitive.The paper presents an optimization methodology for decision making process of bottom mounted supports of offshore wind turbines (OWTs) through reasonable engineering attributes derivation.Mathematic models of support structures are reduced by the generalized single-degree-of-freedom theory with relatively fewer structural parameters.Soft-stiff design optimization based on dynamic properties of OWTs is performed for monopile and lattice supports with different wind turbines,water depth and hub height.Attributes of support structures,wind turbines and environment conditions are applied in the multi-criteria decision making method——TOPSIS for benchmarking of those options.The results illustrate the effectiveness of the proposed optimazation methodology combined with economical and environmental attributes together.