Perylene tetracarboxylic diimide (PTCDI),widely used in organic photovoltaic devices,is an n-type semiconductor with strong absorption in the visible-light spectrum.There has been almost no study of the PTCDI-sensitiz...Perylene tetracarboxylic diimide (PTCDI),widely used in organic photovoltaic devices,is an n-type semiconductor with strong absorption in the visible-light spectrum.There has been almost no study of the PTCDI-sensitized TiO2 composite used to photocatalytically degrade pollutants.In this study,PTCDIand copper phthalocyanine tetrasulfonic acid (CuPcTs)-sensitized TiO2 composites were prepared using a hydrothermal method.The morphologies and structures of the two composites were characterized by X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,and fluorescence spectroscopy.The visible-light photocatalytic activities of the composites were evaluated using the degradation of rhodamine B as a model reaction.Results showed that dye-sensitized TiO2 samples had a wider absorption spectrum range and higher visiblelight photocatalytic activity compared to TiO2 samples.The double dye-sensitized (or co-sensitized) TiO2 composite with efficient electron collection exhibited higher photocatalytic activity than did the single dye-sensitized TiO2 composite.The electron transfer processes of single and double dye-sensitized TiO2 composites were illustrated according to band theory.展开更多
High quality gold nanorods (NRs) with a monodisperse size and aspect ratio are essential for many applications. Here, we describe how nearly monodisperse gold NRs can be separated from polydisperse samples using den...High quality gold nanorods (NRs) with a monodisperse size and aspect ratio are essential for many applications. Here, we describe how nearly monodisperse gold NRs can be separated from polydisperse samples using density gradient ultracentrifugation. Size and dimension analysis by transmission electron microscopy (TEM) and absorption spectroscopy revealed that the Au NRs were separated mainly as a function of their aspect ratio The surface-enhanced Raman scattering (SERS) activity of Au NRs with lower aspect ratio is notably stronger than that of NRs with higher aspect ratio under 633 nm laser excitation, due to the size-dependent absorption of the longitudinal plasmon band. The separation approach provides a method to improve the quality of NRs produced by large scale synthetic methods.展开更多
基金supported by the National Natural Science Foundation of China (20407002)National Basic Research Program of China (2002CB410802)Special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control
文摘Perylene tetracarboxylic diimide (PTCDI),widely used in organic photovoltaic devices,is an n-type semiconductor with strong absorption in the visible-light spectrum.There has been almost no study of the PTCDI-sensitized TiO2 composite used to photocatalytically degrade pollutants.In this study,PTCDIand copper phthalocyanine tetrasulfonic acid (CuPcTs)-sensitized TiO2 composites were prepared using a hydrothermal method.The morphologies and structures of the two composites were characterized by X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,and fluorescence spectroscopy.The visible-light photocatalytic activities of the composites were evaluated using the degradation of rhodamine B as a model reaction.Results showed that dye-sensitized TiO2 samples had a wider absorption spectrum range and higher visiblelight photocatalytic activity compared to TiO2 samples.The double dye-sensitized (or co-sensitized) TiO2 composite with efficient electron collection exhibited higher photocatalytic activity than did the single dye-sensitized TiO2 composite.The electron transfer processes of single and double dye-sensitized TiO2 composites were illustrated according to band theory.
基金Acknowledgements This work was financially supported by the National Natural Science Foundation of China (NSFC), Beijing Natural Science Foundation (No. 2102033), the Programfor New Century Excellent Talents in Universities, and the 973 Program (No. 2009CB939801).
文摘High quality gold nanorods (NRs) with a monodisperse size and aspect ratio are essential for many applications. Here, we describe how nearly monodisperse gold NRs can be separated from polydisperse samples using density gradient ultracentrifugation. Size and dimension analysis by transmission electron microscopy (TEM) and absorption spectroscopy revealed that the Au NRs were separated mainly as a function of their aspect ratio The surface-enhanced Raman scattering (SERS) activity of Au NRs with lower aspect ratio is notably stronger than that of NRs with higher aspect ratio under 633 nm laser excitation, due to the size-dependent absorption of the longitudinal plasmon band. The separation approach provides a method to improve the quality of NRs produced by large scale synthetic methods.