A novel secret key generation(SKG)method based on two-way randomness is proposed for TDD-SISO system.The legitimate transceivers mutually transmit their own random signal via reciprocal wireless channel,then the multi...A novel secret key generation(SKG)method based on two-way randomness is proposed for TDD-SISO system.The legitimate transceivers mutually transmit their own random signal via reciprocal wireless channel,then the multiplication of transmitted and received signal is used as common randomness to generate secret keys.In quasi-static channel,the theoretical SKG rates(SKGRs)of the three SKG methods,namely wireless channel based,one-way randomness and two-way randomness,are derived and compared.Further,two practical SKG schemes based on twoway randomness,Scheme-1bit and Scheme-3bit,are completely designed and simulated.Generally,Scheme-1bit applies to low signal to noise ratio(SNR)scenarios and achieves 0.13~0.86bit/T_s SKGR and 10^(-2)~10^(-5) level secret key outage probability(SKOP),while Scheme-3bit fits high SNR situation and obtains 0.93~1.35bit/T_s SKGR and 10^(-3)~10^(-4) level SKOP.At last,the national institute of standards and technology(NIST)test is conducted to evaluate the secret key randomness(SKRD)and the test results show that both of the proposed schemes have passed the test.展开更多
In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear disto...In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear distortion signals falling in receiving band considered. A joint estimation algorithm is proposed for compensating the time delay and frequency offset taking into account the IQ amplitude and phase imbalances from mixers. The memory effect and nonlinear distortion are adaptively estimated by the de-correlated normalized least mean square(DNLMS) algorithm. Numerical simulation results demonstrate that the proposed self-interference cancellation scheme can efficiently compensate the self-interference and outperform the existing traditional solutions.展开更多
基金supported by National Natural Science Foundation of China(61521003,61501516,61471396,61401510)Postdoctoral Science Foundation of China(2016M592990)
文摘A novel secret key generation(SKG)method based on two-way randomness is proposed for TDD-SISO system.The legitimate transceivers mutually transmit their own random signal via reciprocal wireless channel,then the multiplication of transmitted and received signal is used as common randomness to generate secret keys.In quasi-static channel,the theoretical SKG rates(SKGRs)of the three SKG methods,namely wireless channel based,one-way randomness and two-way randomness,are derived and compared.Further,two practical SKG schemes based on twoway randomness,Scheme-1bit and Scheme-3bit,are completely designed and simulated.Generally,Scheme-1bit applies to low signal to noise ratio(SNR)scenarios and achieves 0.13~0.86bit/T_s SKGR and 10^(-2)~10^(-5) level secret key outage probability(SKOP),while Scheme-3bit fits high SNR situation and obtains 0.93~1.35bit/T_s SKGR and 10^(-3)~10^(-4) level SKOP.At last,the national institute of standards and technology(NIST)test is conducted to evaluate the secret key randomness(SKRD)and the test results show that both of the proposed schemes have passed the test.
基金supported in part by the National Natural Science Foundation of China(No.61601027)
文摘In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear distortion signals falling in receiving band considered. A joint estimation algorithm is proposed for compensating the time delay and frequency offset taking into account the IQ amplitude and phase imbalances from mixers. The memory effect and nonlinear distortion are adaptively estimated by the de-correlated normalized least mean square(DNLMS) algorithm. Numerical simulation results demonstrate that the proposed self-interference cancellation scheme can efficiently compensate the self-interference and outperform the existing traditional solutions.