In this paper, we focus on energy-efficient transceiver and relay beamforming design for multi-pair two-way relay system. The multi-antenna users and the multi-antenna relay are considered in this work. Different from...In this paper, we focus on energy-efficient transceiver and relay beamforming design for multi-pair two-way relay system. The multi-antenna users and the multi-antenna relay are considered in this work. Different from the existing works, the proposed algorithm is energy-efficient which is more applicable to the future green network. It considers both the sum-MSE problem and the power consumption problem for the users under the relay power constraint. Based on the optimal condition decomposition(OCD) method, the energy-efficient precoders at the users can be designed separately with limited information exchanged. The proposed relay beamforming algorithm is based on the alternative direction method of multipliers(ADMM) which has simpler iterative solution and enjoys good convergence. Simulation results demonstrate the performance of the proposed algorithms in terms of power consumption and MSE performance.展开更多
It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interferen...It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interference between cellular and D2D links. In this paper, we consider transceiver design for the system employing multiple antennas to mitigate the interference. The precoder and decoder matrices are optimized in terms of sum mean squared error(MSE) and capacity, respectively. For the MSE minimization problem, we present an alternative transceiver optimization algorithm. While for the non-convex capacity maximization problem, we decompose the primal problem into a sequence of standard convex quadratic programs for efficient optimization. The evaluation of our proposed algorithms for performance enhancement of the entire D2D integrated cellular system is carried out through simulations.展开更多
Orthogonal Frequency Division Multiplexing(OFDM) is an effective technique to deal with a frequency selective channel since it can convert the channel into some flat fading subchannels.However,very different output SN...Orthogonal Frequency Division Multiplexing(OFDM) is an effective technique to deal with a frequency selective channel since it can convert the channel into some flat fading subchannels.However,very different output SNR values of the subchannels will lead to poor bit error performance when a linear equalizer and Equal Bit Allocation(EBA) are adopted in OFDM systems.So,we proposed three novel nonlinear Joint Transceiver(JT) schemes based on Zero-Forcing(ZF) criterion and Minimum Mean Square Error(MMSE) criterion respectively,which can transform all subchannels of an OFDM system into subchannels with identical channel gain.Thus,EBA is equivalent to the Optimum Bit Allocation(OBA) for these subchannels.Numerical analysis helps us to obtain the theoretical approximate BER values of the JT scheme.Simulation results verify the numerical analysis and confirm that the performance of our proposed JT scheme greatly outperforms the traditional linear equalizer with EBA at moderate and high SNR values.展开更多
基金supported by China National S&T Major Project 2013ZX03003002-003National Natural Science Foundation of China under Grant No. 61176027, No.61421001111 Project of China under Grant B14010
文摘In this paper, we focus on energy-efficient transceiver and relay beamforming design for multi-pair two-way relay system. The multi-antenna users and the multi-antenna relay are considered in this work. Different from the existing works, the proposed algorithm is energy-efficient which is more applicable to the future green network. It considers both the sum-MSE problem and the power consumption problem for the users under the relay power constraint. Based on the optimal condition decomposition(OCD) method, the energy-efficient precoders at the users can be designed separately with limited information exchanged. The proposed relay beamforming algorithm is based on the alternative direction method of multipliers(ADMM) which has simpler iterative solution and enjoys good convergence. Simulation results demonstrate the performance of the proposed algorithms in terms of power consumption and MSE performance.
基金supportedin part by Science and Technology Project of State Grid Corporation of China(SGIT0000KJJS1500008)Science and Technology Project of State Grid Corporation of China:“Research and Application of Distributed Energy Resource Public Information Service Platform based on Multisource Data Fusion and Mobile Internet Technologies”Science and Technology Project of State Grid Corporation of China:“Research on communication access technology for the integration, protection, and acquisition of multiple new energy resources”
文摘It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interference between cellular and D2D links. In this paper, we consider transceiver design for the system employing multiple antennas to mitigate the interference. The precoder and decoder matrices are optimized in terms of sum mean squared error(MSE) and capacity, respectively. For the MSE minimization problem, we present an alternative transceiver optimization algorithm. While for the non-convex capacity maximization problem, we decompose the primal problem into a sequence of standard convex quadratic programs for efficient optimization. The evaluation of our proposed algorithms for performance enhancement of the entire D2D integrated cellular system is carried out through simulations.
基金the National Natural Science Foundation of China for Distinguished Young Scholars,the National Key Basic Research Program of China (973 program),the National Natural Science Foundation of China,the National Science and Technology Major Project,the Special Research Fund of State Key Laboratory,the 111 Project
文摘Orthogonal Frequency Division Multiplexing(OFDM) is an effective technique to deal with a frequency selective channel since it can convert the channel into some flat fading subchannels.However,very different output SNR values of the subchannels will lead to poor bit error performance when a linear equalizer and Equal Bit Allocation(EBA) are adopted in OFDM systems.So,we proposed three novel nonlinear Joint Transceiver(JT) schemes based on Zero-Forcing(ZF) criterion and Minimum Mean Square Error(MMSE) criterion respectively,which can transform all subchannels of an OFDM system into subchannels with identical channel gain.Thus,EBA is equivalent to the Optimum Bit Allocation(OBA) for these subchannels.Numerical analysis helps us to obtain the theoretical approximate BER values of the JT scheme.Simulation results verify the numerical analysis and confirm that the performance of our proposed JT scheme greatly outperforms the traditional linear equalizer with EBA at moderate and high SNR values.