期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一类非线性算子方程的迭代求解
1
作者 张兵 姚瑶 《徐州师范大学学报(自然科学版)》 CAS 2008年第3期61-63,74,共4页
利用锥理论和半序理论研究Banach空间中的非线性算子方程解的存在惟一性问题,改进和推广了某些已知结果.
关键词 BANACH空间 半序理论 收敛估计式 正规锥
下载PDF
On Absolute Convergence of Bernstein Polynomials *
2
作者 李中凯 《Journal of Mathematical Research and Exposition》 CSCD 1998年第3期347-352,共6页
This note is devoted to the study of the absolute convergence of Bernstein polynomials. It is proved that for each x∈ , the sequence of the Bernstein polynomials of a function of bounded variation is absolutely su... This note is devoted to the study of the absolute convergence of Bernstein polynomials. It is proved that for each x∈ , the sequence of the Bernstein polynomials of a function of bounded variation is absolutely summable by |C,1| method. Moreover, the estimate of the remainders of the |C,1| sum of the sequence of the Bernstein polynomials is obtained. 展开更多
关键词 Bernstein polynomial absolute convergence.
下载PDF
Convergence error estimates of the Crank-Nicolson scheme for solving decoupled FBSDEs 被引量:1
3
作者 LI Yang YANG Jie ZHAO WeiDong 《Science China Mathematics》 SCIE CSCD 2017年第5期923-948,共26页
In this work, we theoretically analyze the convergence error estimates of the Crank-Nicolson (C-N) scheme for solving decoupled FBSDEs. Based on the Taylor and ItS-Taylor expansions, the Malliavin calculus theory (... In this work, we theoretically analyze the convergence error estimates of the Crank-Nicolson (C-N) scheme for solving decoupled FBSDEs. Based on the Taylor and ItS-Taylor expansions, the Malliavin calculus theory (e.g., the multiple Malliavin integration-by-parts formula), and our new truncation error cancelation techniques, we rigorously prove that the strong convergence rate of the C-N scheme is of second order for solving decoupled FBSDEs, which fills the gap between the second-order numerical and theoretical analysis of the C-N scheme. 展开更多
关键词 convergence analysis Crank-Nicolson scheme decoupled forward backward stochastic differentialequations Malliavin calculus trapezoidal rule
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部