This paper discusses convergence and complexity of arbitrary,but fixed,order adaptive mixed element methods for the Poisson equation in two and three dimensions.The two main ingredients in the analysis,namely the quas...This paper discusses convergence and complexity of arbitrary,but fixed,order adaptive mixed element methods for the Poisson equation in two and three dimensions.The two main ingredients in the analysis,namely the quasi-orthogonality and the discrete reliability,are achieved by use of a discrete Helmholtz decomposition and a discrete inf-sup condition.The adaptive algorithms are shown to be contractive for the sum of the error of flux in L2-norm and the scaled error estimator after each step of mesh refinement and to be quasi-optimal with respect to the number of elements of underlying partitions.The methods do not require a separate treatment for the data oscillation.展开更多
In this paper,we investigate the superconvergence property of the numerical solution to a quadratic elliptic control problem by using mixed finite element methods.The state and co-state are approximated by the order k...In this paper,we investigate the superconvergence property of the numerical solution to a quadratic elliptic control problem by using mixed finite element methods.The state and co-state are approximated by the order k=1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We prove the superconvergence error estimate of h3/2 in L2-norm between the approximated solution and the average L2 projection of the control.Moreover,by the postprocessing technique,a quadratic superconvergence result of the control is derived.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 11171219,11161130004)E-Institutes of Shanghai Municipal Education Commission(Grant No. E03004)+1 种基金supported by Shanghai Leading Discipline Project(Grant No. N.S30405)Shanghai Normal University Research Program (Grant No. SK201202)
文摘This paper discusses convergence and complexity of arbitrary,but fixed,order adaptive mixed element methods for the Poisson equation in two and three dimensions.The two main ingredients in the analysis,namely the quasi-orthogonality and the discrete reliability,are achieved by use of a discrete Helmholtz decomposition and a discrete inf-sup condition.The adaptive algorithms are shown to be contractive for the sum of the error of flux in L2-norm and the scaled error estimator after each step of mesh refinement and to be quasi-optimal with respect to the number of elements of underlying partitions.The methods do not require a separate treatment for the data oscillation.
基金supported by National Natural Science Foundation of China(Grant No.10971074)Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20114407110009)
文摘In this paper,we investigate the superconvergence property of the numerical solution to a quadratic elliptic control problem by using mixed finite element methods.The state and co-state are approximated by the order k=1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We prove the superconvergence error estimate of h3/2 in L2-norm between the approximated solution and the average L2 projection of the control.Moreover,by the postprocessing technique,a quadratic superconvergence result of the control is derived.