本文用计算围道积分和使用特征函数渐近式的方法得到函数按二阶Sturm-Liouville 算子特征函数展开前 n 项和与其余弦级数的前项和之差的两个估计,这两个估计分别适用于有界可测函数和有界变差函数的特征展开。这样,我们能从函数的余弦...本文用计算围道积分和使用特征函数渐近式的方法得到函数按二阶Sturm-Liouville 算子特征函数展开前 n 项和与其余弦级数的前项和之差的两个估计,这两个估计分别适用于有界可测函数和有界变差函数的特征展开。这样,我们能从函数的余弦级数的收敛速度估计得到函数的特征函数展开的收敛速度估计。展开更多
In this paper, we construct the EB estim ation for the parameter of the two-dimensional one side truncat ed distribution fam ilies using Linex loss. The convergence rate of EB estimation is given and it is shown tha...In this paper, we construct the EB estim ation for the parameter of the two-dimensional one side truncat ed distribution fam ilies using Linex loss. The convergence rate of EB estimation is given and it is shown that the proposed empirical Bayes estimaiton can be arbitrarily close to 1 under certain conditions.展开更多
In this paper we propose an absolute error loss EB estimator for parameter of one-side truncation distribution families. Under some conditions we have proved that the convergence rates of its Bayes risk is o, where 0&...In this paper we propose an absolute error loss EB estimator for parameter of one-side truncation distribution families. Under some conditions we have proved that the convergence rates of its Bayes risk is o, where 0<λ,r≤1,Mn≤lnln n (for large n),Mn→∞ as n→∞.展开更多
Let (X,Y) be an R^d×R^1 valued random vector (X_1,Y_1),…, (X_n,Y_n) be a random sample drawn from (X,Y), and let E|Y|<∞. The regression function m(x)=E(Y|X=x) for x∈R^d is estimated by where, and h_n is a p...Let (X,Y) be an R^d×R^1 valued random vector (X_1,Y_1),…, (X_n,Y_n) be a random sample drawn from (X,Y), and let E|Y|<∞. The regression function m(x)=E(Y|X=x) for x∈R^d is estimated by where, and h_n is a positive number depending upon n only, nad K is a given nonnegative function on R^d. In the paper, we study the L_p convergence rate of kernel estimate m_n(x) of m(x) in suitable condition, and improve and extend the results of Wei Lansheng.展开更多
In this paper we introduce a new kind of interpolation of function with period 2π and establish the rate of convergence.The usual Birkhoff interpolation is a special case of our new interpolation as a linnit case.
Consider the following heteroscedastic semiparametric regression model:where {Xi, 1 〈 i 〈 n} are random design points, errors {ei, 1 〈 i 〈 n} are negatively associated (NA) random variables, (r2 = h(ui), and...Consider the following heteroscedastic semiparametric regression model:where {Xi, 1 〈 i 〈 n} are random design points, errors {ei, 1 〈 i 〈 n} are negatively associated (NA) random variables, (r2 = h(ui), and {ui} and {ti} are two nonrandom sequences on [0, 1]. Some wavelet estimators of the parametric component β, the non- parametric component g(t) and the variance function h(u) are given. Under some general conditions, the strong convergence rate of these wavelet estimators is O(n- 1 log n). Hence our results are extensions of those re, sults on independent random error settings.展开更多
In this work, we theoretically analyze the convergence error estimates of the Crank-Nicolson (C-N) scheme for solving decoupled FBSDEs. Based on the Taylor and ItS-Taylor expansions, the Malliavin calculus theory (...In this work, we theoretically analyze the convergence error estimates of the Crank-Nicolson (C-N) scheme for solving decoupled FBSDEs. Based on the Taylor and ItS-Taylor expansions, the Malliavin calculus theory (e.g., the multiple Malliavin integration-by-parts formula), and our new truncation error cancelation techniques, we rigorously prove that the strong convergence rate of the C-N scheme is of second order for solving decoupled FBSDEs, which fills the gap between the second-order numerical and theoretical analysis of the C-N scheme.展开更多
This paper studies estimation in partial functional linear quantile regression in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables....This paper studies estimation in partial functional linear quantile regression in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables. The slope function is estimated by the functional principal component basis. The asymptotic distribution of the estimator of the vector of slope parameters is derived and the global convergence rate of the quantile estimator of unknown slope function is established under suitable norm. It is showed that this rate is optirnal in a minimax sense under some smoothness assumptions on the covariance kernel of the covariate and the slope function. The convergence rate of the mean squared prediction error for the proposed estimators is also established. Finite sample properties of our procedures are studied through Monte Carlo simulations. A real data example about Berkeley growth data is used to illustrate our proposed methodology.展开更多
Semivarying coefficient models are frequently used in statistical models.In this paper,under the condition that the coefficient functions possess different degrees of smoothness,a two-stepmethod is proposed.In the cas...Semivarying coefficient models are frequently used in statistical models.In this paper,under the condition that the coefficient functions possess different degrees of smoothness,a two-stepmethod is proposed.In the case,one-step method for the smoother coefficient functions cannot beoptimal.This drawback can be repaired by using the two-step estimation procedure.The asymptoticmean-squared error for the two-step procedure is obtained and is shown to achieve the optimal rate ofconvergence.A few simulation studies are conducted to evaluate the proposed estimation methods.展开更多
In this paper, the unknown link function, the direction parameter, and the heteroscedastic variance in single index models are estimated by the random weight method under the random censorship, respectively. The centr...In this paper, the unknown link function, the direction parameter, and the heteroscedastic variance in single index models are estimated by the random weight method under the random censorship, respectively. The central limit theory and the convergence rate of the law of the iterated logarithm for the estimator of the direction parameter are derived, respectively. The optimal convergence rates for the estimators of the link function and the heteroscedastic variance are obtained. Simulation results support the theoretical results of the paper.展开更多
This paper considers the convergence rates for nonparametric estimators of the error distribution in semi-parametric regression models. By establishing some general laws of the iterated logarithm, it shows that the ra...This paper considers the convergence rates for nonparametric estimators of the error distribution in semi-parametric regression models. By establishing some general laws of the iterated logarithm, it shows that the rates of convergence of either the empirical distribution or a smoothed version of the empirical distribution function matches exactly the rates obtained for an independent sample from the error distribution.展开更多
文摘In this paper, we construct the EB estim ation for the parameter of the two-dimensional one side truncat ed distribution fam ilies using Linex loss. The convergence rate of EB estimation is given and it is shown that the proposed empirical Bayes estimaiton can be arbitrarily close to 1 under certain conditions.
文摘In this paper we propose an absolute error loss EB estimator for parameter of one-side truncation distribution families. Under some conditions we have proved that the convergence rates of its Bayes risk is o, where 0<λ,r≤1,Mn≤lnln n (for large n),Mn→∞ as n→∞.
文摘Let (X,Y) be an R^d×R^1 valued random vector (X_1,Y_1),…, (X_n,Y_n) be a random sample drawn from (X,Y), and let E|Y|<∞. The regression function m(x)=E(Y|X=x) for x∈R^d is estimated by where, and h_n is a positive number depending upon n only, nad K is a given nonnegative function on R^d. In the paper, we study the L_p convergence rate of kernel estimate m_n(x) of m(x) in suitable condition, and improve and extend the results of Wei Lansheng.
文摘In this paper we introduce a new kind of interpolation of function with period 2π and establish the rate of convergence.The usual Birkhoff interpolation is a special case of our new interpolation as a linnit case.
基金supported by the National Natural Science Foundation of China (No. 11071022)the Key Project of the Ministry of Education of China (No. 209078)the Youth Project of Hubei Provincial Department of Education of China (No. Q20122202)
文摘Consider the following heteroscedastic semiparametric regression model:where {Xi, 1 〈 i 〈 n} are random design points, errors {ei, 1 〈 i 〈 n} are negatively associated (NA) random variables, (r2 = h(ui), and {ui} and {ti} are two nonrandom sequences on [0, 1]. Some wavelet estimators of the parametric component β, the non- parametric component g(t) and the variance function h(u) are given. Under some general conditions, the strong convergence rate of these wavelet estimators is O(n- 1 log n). Hence our results are extensions of those re, sults on independent random error settings.
基金supported by Shanghai University Young Teacher Training Program(Grant No.slg14032)National Natural Science Foundations of China(Grant Nos.11501366 and 11571206)
文摘In this work, we theoretically analyze the convergence error estimates of the Crank-Nicolson (C-N) scheme for solving decoupled FBSDEs. Based on the Taylor and ItS-Taylor expansions, the Malliavin calculus theory (e.g., the multiple Malliavin integration-by-parts formula), and our new truncation error cancelation techniques, we rigorously prove that the strong convergence rate of the C-N scheme is of second order for solving decoupled FBSDEs, which fills the gap between the second-order numerical and theoretical analysis of the C-N scheme.
基金supported by National Natural Science Foundation of China(Grant No.11071120)
文摘This paper studies estimation in partial functional linear quantile regression in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables. The slope function is estimated by the functional principal component basis. The asymptotic distribution of the estimator of the vector of slope parameters is derived and the global convergence rate of the quantile estimator of unknown slope function is established under suitable norm. It is showed that this rate is optirnal in a minimax sense under some smoothness assumptions on the covariance kernel of the covariate and the slope function. The convergence rate of the mean squared prediction error for the proposed estimators is also established. Finite sample properties of our procedures are studied through Monte Carlo simulations. A real data example about Berkeley growth data is used to illustrate our proposed methodology.
基金supported in part by the National Natural Science Foundation of China under Grant No. 10871072Shanxi's Natural Science Foundation of China under Grant No. 2007011014
文摘Semivarying coefficient models are frequently used in statistical models.In this paper,under the condition that the coefficient functions possess different degrees of smoothness,a two-stepmethod is proposed.In the case,one-step method for the smoother coefficient functions cannot beoptimal.This drawback can be repaired by using the two-step estimation procedure.The asymptoticmean-squared error for the two-step procedure is obtained and is shown to achieve the optimal rate ofconvergence.A few simulation studies are conducted to evaluate the proposed estimation methods.
基金supported by National Natural Science Foundation of China (Grant Nos. 10731010, 10971012 and 11071015)
文摘In this paper, the unknown link function, the direction parameter, and the heteroscedastic variance in single index models are estimated by the random weight method under the random censorship, respectively. The central limit theory and the convergence rate of the law of the iterated logarithm for the estimator of the direction parameter are derived, respectively. The optimal convergence rates for the estimators of the link function and the heteroscedastic variance are obtained. Simulation results support the theoretical results of the paper.
基金supported by the National Science Foundation of China under Grant Nos.11201422,11301481,and 11371321Zhejiang Provincial Natural Science Foundation of China under Grant Nos.Y6110639,Y6110110,LQ12A01018,and LQ12A01017+2 种基金the National Statistical Science Research Project of China under Grant No.2012LY174Foundation for Young Talents of ZJGSU under Grant No.1020XJ1314019Zhejiang Provincial Key Research Base for Humanities and Social Science Research(Statistics)
文摘This paper considers the convergence rates for nonparametric estimators of the error distribution in semi-parametric regression models. By establishing some general laws of the iterated logarithm, it shows that the rates of convergence of either the empirical distribution or a smoothed version of the empirical distribution function matches exactly the rates obtained for an independent sample from the error distribution.