The stock of Bigeye tuna(Thunnus obesus) in the Indian Ocean supports an important international fishery and is considered to be fully exploited. The responsible management agency, the Indian Ocean Tuna Commission(IOT...The stock of Bigeye tuna(Thunnus obesus) in the Indian Ocean supports an important international fishery and is considered to be fully exploited. The responsible management agency, the Indian Ocean Tuna Commission(IOTC), does not have an explicit management decision-making framework in place to prevent over-fishing. In this study, we evaluated three harvest control rules, i) constant fishing mortality(CF), from 0.2 to 0.6, ii) constant catch(CC), from 60000 to 140000 t, and iii) constant escapement(CE), from 0.3 to 0.7. The population dynamics simulated by the operating model was based on the most recent stock assessment using Stock Synthesis version Ⅲ(SS3). Three simulation scenarios(low, medium and high productivity) were designed to cover possible uncertainty in the stock assessment and biological parameters. Performances of three harvest control rules were compared on the basis of three management objectives(over 3, 10 and 25 years): i) the probability of maintaining spawning stock biomass above a level that can sustain maximum sustainable yield(MSY) on average, ii) the probability of achieving average catches between 0.8 MSY and 1.0 MSY, and iii) inter-annual variability in catches. The constant escapement strategy(CE=0.5), constant fishing mortality strategy(F=0.4) and constant catch(CC=80000) were the most rational among the respective management scenarios. It is concluded that the short-term annual catch is suggested at 80000 t, and the potential total allowable catch for a stable yield could be set at 120000 t once the stock had recovered successfully. All the strategies considered in this study to achieve a ‘tolerable' balance between resource conservation and utilization have been based around the management objectives of the IOTC.展开更多
基金supported by Shanghai Ocean University Graduate School (PhD Dissertation Grant)the National High-tech R&D Program of China (863 Program 2012AA 092303)+3 种基金Project of Shanghai Science and Technology Innovation (12231203900)Industrialization Program of National Development and Reform Commission (2159999)National Key Technologies Research, Development Program of China (2013BAD13B00)Shanghai Universities First-Class Disciplines Project (Fisheries A)
文摘The stock of Bigeye tuna(Thunnus obesus) in the Indian Ocean supports an important international fishery and is considered to be fully exploited. The responsible management agency, the Indian Ocean Tuna Commission(IOTC), does not have an explicit management decision-making framework in place to prevent over-fishing. In this study, we evaluated three harvest control rules, i) constant fishing mortality(CF), from 0.2 to 0.6, ii) constant catch(CC), from 60000 to 140000 t, and iii) constant escapement(CE), from 0.3 to 0.7. The population dynamics simulated by the operating model was based on the most recent stock assessment using Stock Synthesis version Ⅲ(SS3). Three simulation scenarios(low, medium and high productivity) were designed to cover possible uncertainty in the stock assessment and biological parameters. Performances of three harvest control rules were compared on the basis of three management objectives(over 3, 10 and 25 years): i) the probability of maintaining spawning stock biomass above a level that can sustain maximum sustainable yield(MSY) on average, ii) the probability of achieving average catches between 0.8 MSY and 1.0 MSY, and iii) inter-annual variability in catches. The constant escapement strategy(CE=0.5), constant fishing mortality strategy(F=0.4) and constant catch(CC=80000) were the most rational among the respective management scenarios. It is concluded that the short-term annual catch is suggested at 80000 t, and the potential total allowable catch for a stable yield could be set at 120000 t once the stock had recovered successfully. All the strategies considered in this study to achieve a ‘tolerable' balance between resource conservation and utilization have been based around the management objectives of the IOTC.