期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
基于多特征GBDT模型的收费站短时交通流量预测 被引量:9
1
作者 林培群 周楠楠 《广西大学学报(自然科学版)》 CAS 北大核心 2018年第3期1192-1199,共8页
为了准确地预测高速公路收费站的短时交通流量,以便收费站根据不同时段的交通流量科学合理地制定人员配置方案来缓解收费站交通拥堵,文中提出了一种基于多特征GBDT模型的预测方法。引入一种新的机器学习算法GBDT,并通过数据分析,挖掘出... 为了准确地预测高速公路收费站的短时交通流量,以便收费站根据不同时段的交通流量科学合理地制定人员配置方案来缓解收费站交通拥堵,文中提出了一种基于多特征GBDT模型的预测方法。引入一种新的机器学习算法GBDT,并通过数据分析,挖掘出时段、星期与天气3种有效的新特征,对广州机场高速机场收费站短时交通流量进行预测。结果表明,将挖掘的新特征应用于传统的BP神经网络模型建立多特征BP神经网络模型可以将预测误差降低4.67%,而文中提出的模型相对于多特征BP神经网络模型可以将预测误差降低0.91%,从而证明了该模型的有效性和可行性。 展开更多
关键词 收费站 交通流量短时预测 BP神经网络 GBDT 多特征
下载PDF
基于PSO-LSTM的短时交通流量预测网站设计 被引量:1
2
作者 王宁 成利敏 +1 位作者 甄景涛 段晓霞 《廊坊师范学院学报(自然科学版)》 2024年第1期29-32,共4页
短时交通流量预测是智能交通系统中的重要环节,选用在短时交通流量预测方面表现出色的LSTM神经网络,并利用PSO算法优化LSTM神经网络模型。实验结果表明,与传统LSTM模型相比,所构建的PSO-LSTM模型对未来5分钟和10分钟两种短时交通流量预... 短时交通流量预测是智能交通系统中的重要环节,选用在短时交通流量预测方面表现出色的LSTM神经网络,并利用PSO算法优化LSTM神经网络模型。实验结果表明,与传统LSTM模型相比,所构建的PSO-LSTM模型对未来5分钟和10分钟两种短时交通流量预测,达到了更高的准确率。在此基础上,设计了一个交通流量预测网站更好地展示了预测结果,也方便用户随时查询。 展开更多
关键词 智能交通系统 短时交通流量预测 LSTM神经网络 PSO算法 交通流量预测网站
下载PDF
基于XGBoost算法的高速公路短时交通流量预测
3
作者 赵霞 高源 +2 位作者 赵莉 唐嘉立 李之红 《市政技术》 2024年第10期31-36,共6页
在快速城市化背景下,高速公路交通流畅度对经济效率与民众生活至关重要,故在复杂多变的高速公路网中,快速精准预测交通流量成为实时交通管理的核心前提。然而,由于短时交通流具有非线性和随机变化的特点,交通流量的准确预测一直面临着... 在快速城市化背景下,高速公路交通流畅度对经济效率与民众生活至关重要,故在复杂多变的高速公路网中,快速精准预测交通流量成为实时交通管理的核心前提。然而,由于短时交通流具有非线性和随机变化的特点,交通流量的准确预测一直面临着巨大的挑战。为了克服这些挑战,构建了一种基于XGBoost算法的短时交通流量预测模型,旨在提高交通流量预测的准确性。该模型基于XGBoost算法的强大学习能力和优秀的泛化性能,通过对历史交通流量数据的学习,能够更好地捕捉交通流的复杂模式和规律。为了检验XGBoost模型的准确性和有效性,使用江西永武高速公路某路段ETC门架数据进行了一系列测试,并将结果与传统的ARIMA、BP、GBDT、Prophet模型进行了比较。实验结果表明,相比于传统的预测模型,XGBoost模型在短时交通流量预测中具有更高的预测精度。这将为公路交通管理部门提供更有效的决策支持,帮助其优化交通流,减少交通拥堵,提高交通运行效率。 展开更多
关键词 智能交通 短时交通流量预测 XGBoost ETC卡口 高速公路
下载PDF
高速公路建筑施工的短时交通流量统计预测的大数据分析
4
作者 刘艳荣 《工程抗震与加固改造》 北大核心 2024年第1期I0003-I0003,共1页
城市道路路网建设直接关系着市民的生活质量与城市的未来发展状况。现今时代,交通拥堵问题已成为城市发展过程中不可避免的重要问题,如何解决交通拥堵问题更是成为了城市可持续发展的重要前提。为了构建一个科学合理的城市道路交通体系.
关键词 交通拥堵问题 短时交通流量 道路交通体系 路网建设 城市道路 大数据分析 高速公路 统计预测
下载PDF
基于ARIMA的高速公路短时交通流量预测方法研究
5
作者 崔建 李镇 +4 位作者 赵家旺 康传刚 张雷 王纳 郭亚娟 《山东交通科技》 2024年第4期89-93,共5页
短时交通流预测对于高速公路交通运营管理具有重要的指导价值,能够为高速公路交通流量趋势分析、基础设施建设规模确定以及运营效益评估提供可靠的数据基础。在高速公路交通流量数据平稳性分析的基础上,利用信息准则法进行预测模型识别... 短时交通流预测对于高速公路交通运营管理具有重要的指导价值,能够为高速公路交通流量趋势分析、基础设施建设规模确定以及运营效益评估提供可靠的数据基础。在高速公路交通流量数据平稳性分析的基础上,利用信息准则法进行预测模型识别,通过参数估计和模型检验,构建基于ARIMA的高速公路短时交通流量预测模型。最后利用济青高速的真实交通流量数据进行实例分析,结果表明ARIMA预测模型在高速公路短时交通流量预测方面具有良好的适应性和稳定性,在预测精度方面优于移动平均和指数平滑预测模型。 展开更多
关键词 高速公路 智能交通 短时预测 ARIMA 交通流量
下载PDF
基于多维流量特征的短时交通流量预测模型 被引量:1
6
作者 闻川 成卫 肖海承 《公路交通科技》 CSCD 北大核心 2023年第7期191-199,共9页
大多数基于神经网络的短时交通流量预测模型存在以下2个方面的问题:一是提取时间特征和空间特征导致模型结构复杂、运算速度慢,二是模型中不断增加的交通态势特征难以采集。针对上述问题,提出了一种以历史交通流量构建多维流量特征的滑... 大多数基于神经网络的短时交通流量预测模型存在以下2个方面的问题:一是提取时间特征和空间特征导致模型结构复杂、运算速度慢,二是模型中不断增加的交通态势特征难以采集。针对上述问题,提出了一种以历史交通流量构建多维流量特征的滑动窗口图注意力网络(SW-GAT)模型。首先,提出了引入历史流量及多组流量的滑动窗口数据,通过模型训练以获取潜在时间特征的假设。其次,引入图注意力机制,获取了路网节点之间的空间特征。最后,引入节点邻接距离矩阵构建了双层SW-GAT模型,以此提高输出的准确性和鲁棒性。将长短时记忆网络(LSTM)、图卷积网络(GCN)、图注意力网络(GAT)及多维流量特征GCN模型作为对照组进行了模型评价,间隔时间取值为15 min。试验结果表明:最优的滑动窗口K取值为3和4;相比于对照组的4种模型,双层SW-GAN模型的预测精度分别平均提高了约2.5%,5.82%,3.36%,8.2%;平均绝对误差MAE分别下降了约19.83,17.82,15.23,16.19;均方根误差RMSE分别下降约21.27,20.33,19.25,20.62;在交通流量变化频繁的时间段(7:30—18:30),SW-GAT模型曲线的拟合效果优于对照组的4个模型,对突变的交通流量有着更好的预测精度。SW-GAT模型能在保证预测准确率的情况下,降低对数据特征的要求和模型的复杂度,为解决深度学习特征数据搜集困难的问题提供了一种新思路。 展开更多
关键词 智能交通 短时交通流量预测 GAT模型 图注意力网络 神经网络 滑动窗口
下载PDF
基于二次分解和融合多特征的短时交通流量组合预测模型
7
作者 陈昆 曲大义 +1 位作者 王少杰 王其坤 《广西师范大学学报(自然科学版)》 CAS 北大核心 2023年第4期33-46,共14页
考虑到交通流的随机性和非线性特征导致预测精度低的问题,本文提出一种基于二次分解和融合多特征的组合预测模型。利用时序分解方法将提取交通流量中的趋势性和周期性特征,通过优化后的变分模态分解对残差分量进行二次分解,并对所得分... 考虑到交通流的随机性和非线性特征导致预测精度低的问题,本文提出一种基于二次分解和融合多特征的组合预测模型。利用时序分解方法将提取交通流量中的趋势性和周期性特征,通过优化后的变分模态分解对残差分量进行二次分解,并对所得分量进行重构;使用相关系数法选取交通流的外部特征,建立3个相异模型对融合外部特征后的分量进行预测;利用强化学习优化各模型的权重,加权求和得到最终的预测结果。利用长沙市区的交通流量进行仿真分析,结果表明:与长短时记忆神经网络模型、卷积神经网络和门控循环单元的组合模型、二次分解后的BP和二次分解后的轻量级梯度提升机相比,本文建立的模型对城市道路交通流的预测效果更好,平均绝对误差为2.622,均方根误差为3.479,均优于对比模型的预测误差,验证了模型的有效性。 展开更多
关键词 短时交通流量预测 时序分解 特征选择 Q-LEARNING 组合模型
下载PDF
基于CEEMDAN-SE和LSSA-GRU组合的短时交通流量预测
8
作者 田丰 程志华 侯天育 《公路交通科技》 CSCD 北大核心 2023年第6期194-202,共9页
交通流量预测是构建与完善智能交通系统的关键技术。为进一步提高短时交通流量预测的精度,提出了使用带自适应噪声的完全集合经验模态分解(CEEMDAN)和样本熵(SE)数据处理方式,并结合基于Lévy飞行搜索策略的麻雀搜索算法(LSSA)优化... 交通流量预测是构建与完善智能交通系统的关键技术。为进一步提高短时交通流量预测的精度,提出了使用带自适应噪声的完全集合经验模态分解(CEEMDAN)和样本熵(SE)数据处理方式,并结合基于Lévy飞行搜索策略的麻雀搜索算法(LSSA)优化了门控循环单元(GRU)模型的短期交通流量预测方法,即CEEMDAN-SE-LSSA-GRU模型。为充分挖掘交通流量数据的非线性特征,首先,使用CEEMDAN对数据降噪分解处理以获取多个本征模态分量及1个残余差值,并通过计算每个本征模态分量的样本熵值来评估其复杂度,将复杂度相似的分量进行了重组,以提高后续模型的预测效率及预测精度。其次,使用Lévy飞行策略优化的麻雀搜索算法对GRU模型进行了超参数寻优,保证重组后的子序列在预测过程中分别能够获得各自的最优模型参数。最后,将各个子序列的预测结果集成处理,得到短期交通流量的最终预测值。为验证组合模型的有效性,采用加州高速公路交通流量数据集作为研究对象进行了实例验证。将7种未进行数据降噪分解或未进行超参数优化的预测模型形成对照组进行了定量分析。结果表明:CEEMDAN-SE-LSSA-GRU模型能更好地拟合时间序列变化趋势,其平均绝对误差为9.1126,均方根误差为12.2457,平均绝对百分比误差为3.42%,表明CEEMDAN-SE-LSSA-GRU模型能很好地反映出流量变化的基本趋势和规律。 展开更多
关键词 智能交通 短时交通流量预测 麻雀搜索算法 CEEMDAN GRU
下载PDF
短时交通流预测方法分析研究
9
作者 牛巧丽 《中国储运》 2024年第5期119-120,共2页
1.引言近年来,由于城市居民生活水平不断提高,机动车拥有量持续上涨,以及节假日集中出行的特征,导致高速公路交通负荷日益增强,交通拥堵现象频发。造成交通拥堵现象的原因多种多样,在道路硬件建设不可能短期实现的情况下,如果能够预测... 1.引言近年来,由于城市居民生活水平不断提高,机动车拥有量持续上涨,以及节假日集中出行的特征,导致高速公路交通负荷日益增强,交通拥堵现象频发。造成交通拥堵现象的原因多种多样,在道路硬件建设不可能短期实现的情况下,如果能够预测不同线路车流情况,可以对出行者出行进行引导,控制交通流量,减少交通拥堵。 展开更多
关键词 机动车拥有量 短时交通预测 交通负荷 交通拥堵 交通流量 高速公路 居民生活水平 硬件建设
下载PDF
基于主成分分析和支持向量机的道路网短时交通流量预测 被引量:47
10
作者 姚智胜 邵春福 +1 位作者 熊志华 岳昊 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第1期48-52,共5页
将主成分分析和支持向量机回归相结合,进行道路网多断面的短时交通流量预测研究。首先,整理分析路网中多个断面交通流量数据进行主成分分析,得到主成分数据序列;其次,根据主成分数据序列建立训练集训练支持向量机,并利用遗传算法优化参... 将主成分分析和支持向量机回归相结合,进行道路网多断面的短时交通流量预测研究。首先,整理分析路网中多个断面交通流量数据进行主成分分析,得到主成分数据序列;其次,根据主成分数据序列建立训练集训练支持向量机,并利用遗传算法优化参数;最后,输入支持向量机所需数据,得到主成分预测结果,转化为断面交通流量数据,从而预测道路网短时交通流量。采用城市快速路多断面数据进行实例分析,结果表明,该模型比单一断面预测方法的效果更好。 展开更多
关键词 智能交通系统 短时交通流量预测 支持向量机 主成分分析 道路网
下载PDF
基于混沌和RBF神经网络的短时交通流量预测 被引量:39
11
作者 张玉梅 曲仕茹 温凯歌 《系统工程》 CSCD 北大核心 2007年第11期26-30,共5页
针对传统的应用数学模型方法在短时交通流预测精度和实时性方面存在的问题,论文从非线性时间序列的角度对短时交通流量预测进行探讨,提出采用基于混沌理论的RBF神经网络预测方法。首先在采用小数据量的Lyapunav指数计算方法判定交通流... 针对传统的应用数学模型方法在短时交通流预测精度和实时性方面存在的问题,论文从非线性时间序列的角度对短时交通流量预测进行探讨,提出采用基于混沌理论的RBF神经网络预测方法。首先在采用小数据量的Lyapunav指数计算方法判定交通流存在混沌的前提下,对交通流量数据进行相空间重构。构建了RBF神经网络,并对模拟产生的Lorenz和Rossler混沌时间序列数据以及实际采集的高速公路交通流量数据进行了仿真研究。结果表明,该方法对模拟产生的混沌时间序列具有很好的预测效果,在交通流量的短时预测上也具有较高的预测精度。 展开更多
关键词 短时交通流量 预测 混沌 RBF神经网络 相空间重构
下载PDF
短时交通流量两种预测方法的研究 被引量:20
12
作者 田晶 杨玉珍 陈阳舟 《公路交通科技》 CAS CSCD 北大核心 2006年第4期103-106,共4页
实时、准确的完成短时交通流量预测是实现交通控制与诱导的关键。采用基于L-M算法的BP神经网络预测方法和基于混沌时间序列的预测方法对短时交通流量时间序列进行了预测研究,给出两种方法的基本原理及具体的预测步骤,并对一组实际的流... 实时、准确的完成短时交通流量预测是实现交通控制与诱导的关键。采用基于L-M算法的BP神经网络预测方法和基于混沌时间序列的预测方法对短时交通流量时间序列进行了预测研究,给出两种方法的基本原理及具体的预测步骤,并对一组实际的流量数据进行了预测。仿真结果表明:两种方法都能较准确的预测交通流量,但混沌时间序列方法的实时性更好一些,更适合于预测短时交通流量。 展开更多
关键词 短时交通流量 预测 神经网络 L-M算法 混沌时间序列
下载PDF
基于RVM和ARIMA的短时交通流量预测方法研究 被引量:14
13
作者 韦凌翔 陈红 +2 位作者 王永岗 钟栋青 王春娥 《武汉理工大学学报(交通科学与工程版)》 2017年第2期349-354,共6页
为进一步提高短时交通流量预测精度,提出一种基于RVM和ARIMA的短时交通流量降噪方法.设计了降噪方法的流程,选取了降噪方法误差评价指标;基于RVM和ARIMA的短时交通流量预测方法和预测流程,引入平均绝对相对误差(MAPE)作为预测方法误差... 为进一步提高短时交通流量预测精度,提出一种基于RVM和ARIMA的短时交通流量降噪方法.设计了降噪方法的流程,选取了降噪方法误差评价指标;基于RVM和ARIMA的短时交通流量预测方法和预测流程,引入平均绝对相对误差(MAPE)作为预测方法误差评价指标,以某城市道路的录像数据为实例,对构建的预测方法有效性进行验证.结果表明,在不同公用时间尺度(5,10,15min)下,所提出的短时交通流量预测方法的平均绝对相对误差均小于直接运用指数降噪模型、BT神经网络模型、ARIMA模型等方法预测的结果,有效地提高了短时交通流量预测精度. 展开更多
关键词 交通工程 短时交通流量预测 相关向量机 多时间尺度 自回归积分移动平均模型
下载PDF
多子群遗传神经网络模型用于路口短时交通流量预测 被引量:16
14
作者 刘汉丽 周成虎 +1 位作者 朱阿兴 李霖 《测绘学报》 EI CSCD 北大核心 2009年第4期363-368,共6页
为适应交叉路口短时交通流量的实时变化性和非线性性,提出将一种多子群遗传神经网络算法(MPGNN)应用于交叉路口短时交通流量的预测,结合BP网络对非线性问题良好的求解能力和遗传算法优良的全局寻优能力,建立遗传算法的多个子种群来搜索B... 为适应交叉路口短时交通流量的实时变化性和非线性性,提出将一种多子群遗传神经网络算法(MPGNN)应用于交叉路口短时交通流量的预测,结合BP网络对非线性问题良好的求解能力和遗传算法优良的全局寻优能力,建立遗传算法的多个子种群来搜索BP网络的最佳结构。通过对武汉市珞瑜路、武珞路、珞狮南路、珞狮北路交叉路口的短时交通流量进行预测分析,取得了良好的实验效果。根据预测结果对该路段的交通流量进行重新分配和控制,对缓解珞瑜路和武珞路段高峰时期交通流量的压力具有重要作用。 展开更多
关键词 交叉路口短时交通流量 流量预测 BP神经网络 遗传算法 多子群
下载PDF
交通流量经验模态分解与神经网络短时预测方法 被引量:9
15
作者 罗向龙 牛国宏 潘若禹 《计算机工程与应用》 CSCD 北大核心 2010年第26期212-214,共3页
基于经验模态分解(EMD)和神经网络,提出了一种短时交通流量预测方法。通过EMD分解把交通流量分解成不同的模态,利用神经网络对分解后的各分量进行预测,再将预测值累加得到最终的预测结果。利用EMD与神经网络模型对I-800数据库实测交通... 基于经验模态分解(EMD)和神经网络,提出了一种短时交通流量预测方法。通过EMD分解把交通流量分解成不同的模态,利用神经网络对分解后的各分量进行预测,再将预测值累加得到最终的预测结果。利用EMD与神经网络模型对I-800数据库实测交通流量数据进行预测,结果表明该方法具有很高的预测精度,明显优于直接采用神经网络的预测结果。 展开更多
关键词 短时交通流量 经验模态分解 人工神经网络 预测
下载PDF
基于SVM短时交通流量预测 被引量:7
16
作者 蒋晓峰 许伦辉 朱悦 《广西师范大学学报(自然科学版)》 CAS 北大核心 2012年第4期13-17,共5页
交通流量预测是智能交通系统中非常重要的研究领域,传统的预测方法在交通流量预测中有着非常广泛的应用。但是,在短时交通流量预测中,由于其影响因素错综复杂,传统的预测方法对于短时交通流量不能很好地进行预测。随着机器学习和数据挖... 交通流量预测是智能交通系统中非常重要的研究领域,传统的预测方法在交通流量预测中有着非常广泛的应用。但是,在短时交通流量预测中,由于其影响因素错综复杂,传统的预测方法对于短时交通流量不能很好地进行预测。随着机器学习和数据挖掘各种理论的不断提出及完善,机器学习和数据挖掘与交通流量预测的结合是智能交通系统未来发展的一个重要方向。本文利用SVM(support vector machine)构建了短时交通流量预测模型,并利用遗传算法(genetic algorithm)对SVM的惩罚参数C和核参数σ进行优化,同时比较SVM中不同核函数,包括多项式核函数(polynomial kernel)和径向基核函数(RBF kernel)的预测效果。径向基SVM(RBF SVM)训练时间要比多项式SVM(polynomial SVM)短,预测准确率和精度也要比多项式SVM要好。从仿真结果上看,SVM非常适合应用于短时交通流量预测,能够取得很好的预测效果与精度。 展开更多
关键词 SVM 交通流量 短时预测 遗传算法
下载PDF
基于时空分析的短时交通流量预测模型 被引量:8
17
作者 夏英 梁中军 王国胤 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期552-560,共9页
根据交通流的时空关联性和非线性,提出一种基于时空分析的短时交通流量预测模型.在相关系数的基础上扩展时空语义,提出时空相关分析算法,并以支持向量机为预测工具进行预测.弥补现有模型在预测因子选取方面的不足,提高预测精度并避免预... 根据交通流的时空关联性和非线性,提出一种基于时空分析的短时交通流量预测模型.在相关系数的基础上扩展时空语义,提出时空相关分析算法,并以支持向量机为预测工具进行预测.弥补现有模型在预测因子选取方面的不足,提高预测精度并避免预测的人为主观性.实验结果表明了算法和模型的有效性. 展开更多
关键词 短时交通流量预测 支持向量机 时空相关系数 时空相关分析
下载PDF
基于ICA和SVM的道路网短时交通流量预测方法 被引量:4
18
作者 谢宏 刘敏 陈淑荣 《计算机应用》 CSCD 北大核心 2009年第9期2550-2553,共4页
交通流量预测是智能交通系统(ITS)研究的一个重要课题。通过对多个观测点交通流量数据特点进行分析,采用一种基于独立成分分析(ICA)与支持向量机(SVM)相结合的短时交通流量预测方法。首先,通过独立成分分析得到同一条道路上各个观测点... 交通流量预测是智能交通系统(ITS)研究的一个重要课题。通过对多个观测点交通流量数据特点进行分析,采用一种基于独立成分分析(ICA)与支持向量机(SVM)相结合的短时交通流量预测方法。首先,通过独立成分分析得到同一条道路上各个观测点的交通流量的独立源信号;接着利用支持向量机预测模型对源信号进行建模和预测,并通过遗传算法(GA)优化参数;最后将其转换为交通流量数据,得到预测结果。实例分析结果显示,该算法优于直接利用支持向量机对交通流量进行预测的方法,并能去除同一条道路上多个观测点测量数据之间的相互影响。 展开更多
关键词 短时交通流量 预测 独立成分分析 支持向量机 遗传算法
下载PDF
基于遗传灰色GM(1,1,ρ)模型的短时交通流量预测 被引量:8
19
作者 吴宝春 郑蕊蕊 +1 位作者 李敏 杨亚宁 《电子设计工程》 2012年第13期165-167,171,共4页
为了提高短时交通流量的预测精度,本文根据短时交通流量的数据特征,结合灰色模型在短时预测方面的优势,利用遗传算法根据已知数据优化灰色新陈代谢GM(1,1,ρ)模型的背景值参数ρ,对实时采集的交通流量数据进行仿真分析,实验结果验证了... 为了提高短时交通流量的预测精度,本文根据短时交通流量的数据特征,结合灰色模型在短时预测方面的优势,利用遗传算法根据已知数据优化灰色新陈代谢GM(1,1,ρ)模型的背景值参数ρ,对实时采集的交通流量数据进行仿真分析,实验结果验证了该模型的准确性、实时性和有效性。 展开更多
关键词 短时交通流量 预测 灰色模型 遗传算法
下载PDF
基于蚁群优化支持向量机的短时交通流量预测 被引量:11
20
作者 徐鹏 姜凤茹 《计算机应用与软件》 CSCD 北大核心 2013年第3期250-254,共5页
为了提高短时交通流量的预测精度,提出一种蚁群算法(ACO)优化支持向量机(SVM)参数的短时交通流量预测模型(ACO-SVM)。将SVM参数的选取看作参数的组合优化问题求解,采用鲁棒性较强的ACO来搜索最优解。仿真结果表明,ACO-SVM在预测精度、... 为了提高短时交通流量的预测精度,提出一种蚁群算法(ACO)优化支持向量机(SVM)参数的短时交通流量预测模型(ACO-SVM)。将SVM参数的选取看作参数的组合优化问题求解,采用鲁棒性较强的ACO来搜索最优解。仿真结果表明,ACO-SVM在预测精度、收敛速度、泛化能力等方面均优于参比模型,更适合于短时交通流量的预测。 展开更多
关键词 短时交通流量 支持向量机 蚁群优化算法 预测
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部