The fully connected Hopfield network is inferred based on observed magnetizations and pairwise correlations.We present the system in the glassy phase with low temperature and high memory load.We find that the inferenc...The fully connected Hopfield network is inferred based on observed magnetizations and pairwise correlations.We present the system in the glassy phase with low temperature and high memory load.We find that the inference error is very sensitive to the form of state sampling.When a single state is sampled to compute magnetizations and correlations,the inference error is almost indistinguishable irrespective of the sampled state.However,the error can be greatly reduced if the data is collected with state transitions.Our result holds for different disorder samples and accounts for the previously observed large fluctuations of inference error at low temperatures.展开更多
基金Supported by the National Science Foundation of China under Grant Nos. 10774150,10834014the China 973-Program under Grant Nos. 2007CB935903 and HKUST605010
文摘The fully connected Hopfield network is inferred based on observed magnetizations and pairwise correlations.We present the system in the glassy phase with low temperature and high memory load.We find that the inference error is very sensitive to the form of state sampling.When a single state is sampled to compute magnetizations and correlations,the inference error is almost indistinguishable irrespective of the sampled state.However,the error can be greatly reduced if the data is collected with state transitions.Our result holds for different disorder samples and accounts for the previously observed large fluctuations of inference error at low temperatures.