This article presents sequential inkjet-based method to produce double emulsions as templates to fabricate morphology-controlled and inner-modified hole-shell microparticles. This sequential printing strategy for prod...This article presents sequential inkjet-based method to produce double emulsions as templates to fabricate morphology-controlled and inner-modified hole-shell microparticles. This sequential printing strategy for producing double emulsions circumvents complex wettability modification of the microchannels in lithography-based microfluidic device and largely saves the reagent in comparison to the coaxial two-phase jet in glass capillary. The formation of hole-shell structures is attributed to the diffusion of solvent out of droplets into butanol at the interface between oil and extract phase. The change of hole size is controlled by different diffusion rate, which is determined by changing the volume ratio of butanol and alcohol in extract phase.This presented flexible method can fabricate some functionalized microparticles in our future work.展开更多
基金supported by the National Natural Science Foundation of China(21435002,21621003)the National Key R&D Program of China(2017YFC0906800)
文摘This article presents sequential inkjet-based method to produce double emulsions as templates to fabricate morphology-controlled and inner-modified hole-shell microparticles. This sequential printing strategy for producing double emulsions circumvents complex wettability modification of the microchannels in lithography-based microfluidic device and largely saves the reagent in comparison to the coaxial two-phase jet in glass capillary. The formation of hole-shell structures is attributed to the diffusion of solvent out of droplets into butanol at the interface between oil and extract phase. The change of hole size is controlled by different diffusion rate, which is determined by changing the volume ratio of butanol and alcohol in extract phase.This presented flexible method can fabricate some functionalized microparticles in our future work.