期刊文献+
共找到185篇文章
< 1 2 10 >
每页显示 20 50 100
基于改进二分K-means算法的网络异常检测技术研究 被引量:7
1
作者 张雅茹 《鄂州大学学报》 2022年第6期97-99,共3页
针对传统网络异常检测技术难以有效处理大数据背景下的海量异常数据的问题,研究提出以改进二分K-means算法来构建正常行为特征训练集模型,然后结合直推信度机制(Transductive Confidence Machine, TCM)、K-近邻(K-Nearest Neighbor, KNN... 针对传统网络异常检测技术难以有效处理大数据背景下的海量异常数据的问题,研究提出以改进二分K-means算法来构建正常行为特征训练集模型,然后结合直推信度机制(Transductive Confidence Machine, TCM)、K-近邻(K-Nearest Neighbor, KNN)算法设计出适应于该正常行为模型的网络异常检测算法ITCM-KNN。研究结果表明,ITCM-KNN算法的检测率相较传统检测算法Cluster平均提高8.37%,误报率平均下降2.14%,由此说明ITCM-KNN算法能较好地应用于大数据环境下的网络异常检测,为未来进一步提升网络安全性提供新的参考路径。 展开更多
关键词 改进二分k-means算法 网络异常 TCM KNN
下载PDF
基于K-Means++算法和改进遗传算法的维保站维修调度方法的研究
2
作者 何晨曦 《科学技术创新》 2025年第3期49-52,共4页
传统的电梯维保工作模式是定期保养,即针对每台电梯而言,需要每半个月去保养一次,然而电梯设备的分布和保养进度的复杂性决定了人为排定的维保路线不能够最大限度地解决维保资源。为此提出基于K-Means++算法和改进遗传算法的维保站维修... 传统的电梯维保工作模式是定期保养,即针对每台电梯而言,需要每半个月去保养一次,然而电梯设备的分布和保养进度的复杂性决定了人为排定的维保路线不能够最大限度地解决维保资源。为此提出基于K-Means++算法和改进遗传算法的维保站维修调度方法,首先使用分解法的思想将问题进行拆分,然后采用K均值聚类算法将维保任务分配到合适的维保站,建立总路程最短的维保调度模型,最后利用改进遗传算法进行求解,获取最优路线规划结果,对缩减维保工作时间,提升维保工作效率,从而提升电梯使用的安全性和可靠性有一定的意义。 展开更多
关键词 电梯维保 维保调度 分解法 k-means++算法 改进遗传算法
下载PDF
基于改进K-means数据聚类算法的网络入侵检测 被引量:3
3
作者 黄俊萍 《成都工业学院学报》 2024年第2期58-62,97,共6页
随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算... 随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算法求取最优初始聚类中心,实现K-means数据聚类算法的改进;最后以计算得出的特征值为输入项,实现对网络入侵行为的精准检测。结果表明:K-means算法改进后较改进前的戴维森堡丁指数更小,均低于0.6,达到了改进目的。改进K-means算法各样本的准确率均高于90%,相对更高,检测时间均低于10 s,相对更少,说明该方法能够以高效率完成更准确的网络入侵检测。 展开更多
关键词 改进k-means数据聚类算法 防火墙日志 入侵检测特征 粒子群算法 网络入侵检测
下载PDF
基于改进K-means聚类和遗传算法的混合算法求解异构车辆路径问题
4
作者 吴麟麟 吕一鸣 +1 位作者 何美玲 韩珣 《物流技术》 2024年第7期48-62,共15页
由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时... 由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时间窗惩罚成本的混合整数规划模型。同时,提出了一种基于改进K-means聚类和遗传算法的混合算法对模型进行求解。实验仿真先求解不考虑时间窗的问题初步证明混合算法的有效性,再在带时间窗的问题中求解不同规模算例的单一及异构车型结果,以证明异构车型配送更优。最后,对该混合算法的求解结果与其他混合算法的求解结果进行对比分析,证明了混合算法的优越性。研究结果表明:该混合算法求解的异构车型结果优于单一车型,并且比其他混合算法求解的异构车型结果更优,异构车辆配送使用的配送车辆数更少,总成本也更低,该混合算法具有更好的效率和性能。 展开更多
关键词 异构车辆路径问题 改进k-means聚类算法 遗传算法 混合算法
下载PDF
基于改进K-means算法的电力营销档案信息管理系统 被引量:2
5
作者 安大炜 邵琳玲 +1 位作者 向黎藜 谭元刚 《自动化技术与应用》 2024年第3期185-188,共4页
为满足档案管理用户需求,实现不同营销档案管理信息分类,提出改进K-means算法的电力营销档案信息管理系统。设计电能信息收编、客户缴费管理、营销报表管理及系统开发等子系统功能;利用改进的K-means方法定义系统算法,引入权重概念,将... 为满足档案管理用户需求,实现不同营销档案管理信息分类,提出改进K-means算法的电力营销档案信息管理系统。设计电能信息收编、客户缴费管理、营销报表管理及系统开发等子系统功能;利用改进的K-means方法定义系统算法,引入权重概念,将元素分配到和中心点距离最近的簇中,实现档案分类统计。仿真实验证明,该系统可实现不同营销档案的准确分类,减少响应延时,提高系统吞吐量,满足电力营销档案管理用户需求。 展开更多
关键词 改进k-means算法 电力营销 档案信息分类 分类权重
下载PDF
基于改进k-means算法的电力负荷数据聚类方法
6
作者 吕相沅 陈安琪 +1 位作者 刘青 程昱舒 《电子设计工程》 2024年第20期121-124,129,共5页
针对现有数据聚类方法难以对电力系统负荷数据进行有效聚类的问题,该文结合改进k-means算法,完成电力负荷数据聚类方法设计。该研究基于电力负荷数据中心点生成过程,构建中心点间距与类簇距离判定函数,筛选电力负荷数据聚类中心。确定... 针对现有数据聚类方法难以对电力系统负荷数据进行有效聚类的问题,该文结合改进k-means算法,完成电力负荷数据聚类方法设计。该研究基于电力负荷数据中心点生成过程,构建中心点间距与类簇距离判定函数,筛选电力负荷数据聚类中心。确定聚类中心后,采用数据分离方法完成正常负荷数据和异常负荷数据的分离,在分离过程中应保证数据连续,以避免潜在有用数据丢失。利用改进的k-means算法分析电力负荷数据,计算不同种类数据间的欧氏距离。设定指针矩阵,融合不同类中心点,对原始数据区间规范化操作,获取不同簇的负荷数据聚类通道传输功率谱密度。将数据依次分配到不同簇上,实现电力负荷数据聚类。由实验结果可知,该方法站点1数据聚类范围为0.3~0.48 pu,站点2数据聚类范围为0.34~0.47 pu,优于对比方法,与理想聚类范围最贴近,具有良好的聚类效果。 展开更多
关键词 改进k-means算法 电力负荷 数据聚类 区间规范化操作
下载PDF
基于改进RFM模型和K-means算法的淘宝用户行为分析
7
作者 陈海燕 张经纬 《滁州学院学报》 2024年第5期41-45,57,共6页
大数据时代下,我国电子商务发展迅速,用户行为数据日益增多,利用海量数据对用户行为进行剖析,为精准营销提供决策依据,进而提高用户忠诚度、满意度和活跃度,成为电商平台关注的焦点。基于淘宝用户真实数据集,提出基于改进RFM模型和K-me... 大数据时代下,我国电子商务发展迅速,用户行为数据日益增多,利用海量数据对用户行为进行剖析,为精准营销提供决策依据,进而提高用户忠诚度、满意度和活跃度,成为电商平台关注的焦点。基于淘宝用户真实数据集,提出基于改进RFM模型和K-means算法的用户行为分析方法,为了更好地描述用户行为特征,创建“活跃度转化率”指标进行分析,实验结果表明,该方法能够有效地进行用户类别划分,划分结果符合“二八定律”,能够协助电商平台完成精确化的客户关系管理。 展开更多
关键词 改进的RFM模型 k-means算法 用户行为分析
下载PDF
基于改进K-means算法的通勤交通小区识别
8
作者 秦阳 詹勇 +2 位作者 明路遥 杨舒淇 蓝振祎 《计算机与现代化》 2024年第7期63-68,119,126,共8页
通勤是具有周期性和稳定性的城市居民出行行为,是城市发展规划和公共交通管理的重要研究内容。出租车GPS(Global Position System,全球定位系统)轨迹数据在一定程度上反映了城市交通状况和市民出行模式。针对出租车区域性通勤模式识别问... 通勤是具有周期性和稳定性的城市居民出行行为,是城市发展规划和公共交通管理的重要研究内容。出租车GPS(Global Position System,全球定位系统)轨迹数据在一定程度上反映了城市交通状况和市民出行模式。针对出租车区域性通勤模式识别问题,本文提出一种基于改进K-means算法的通勤交通小区识别方法。该方法主要包括3个步骤:划分交通小区、生成交通小区之间的流量转移矩阵和识别通勤交通小区对。参考现有的交通小区划分方法,本文提出一种基于细粒度单元的自下而上的交通小区划分方法。在通勤交通小区对识别模型中,以高峰时段的流量及其离散系数作为输入特征,基于改进K-means算法识别通勤交通小区对。最后,基于重庆市出租车GPS数据集进行实验验证,结果表明该方法效果显著。 展开更多
关键词 GPS轨迹数据 改进k-means算法 通勤交通小区识别
下载PDF
光伏波动平抑下改进K-means的电池储能动态分组控制策略 被引量:2
9
作者 余洋 陆文韬 +3 位作者 陈东阳 刘霡 夏雨星 郑晓明 《电力系统保护与控制》 EI CSCD 北大核心 2024年第7期1-11,共11页
针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并... 针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。 展开更多
关键词 电池储能系统 波动平抑 功率分配 改进侏儒猫鼬优化算法 改进k-means聚类算法
下载PDF
基于改进K-means聚类的轨道交通基础设施分布式光伏发电典型场景生成及出力特性分析 被引量:1
10
作者 陈凯 雷琪 李豆萌 《电气工程学报》 CSCD 北大核心 2024年第2期364-372,共9页
受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于... 受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于分布式光伏发电设施以及气象数据,利用PVsyst软件模拟光伏发电出力数据。然后,针对基本K-means聚类算法聚类参数和初始聚类中心盲目性高的问题,结合聚类有效性指标(Density based index,DBI)和层次聚类对其进行改进并利用改进K-means聚类算法生成光伏典型日出力场景。最后,基于华中地区某地轨道交通基础设施分布式光伏系统对所提方法的有效性和优越性进行验证,并通过定性和定量分析各典型场景的出力特性揭示轨道交通基础设施分布式光伏出力的规律和特点。 展开更多
关键词 分布式光伏出力 改进k-means聚类算法 典型出力场景 出力特性分析
下载PDF
基于云计算和改进K-means算法的海量用电数据分析方法 被引量:30
11
作者 张承畅 张华誉 +1 位作者 罗建昌 何丰 《计算机应用》 CSCD 北大核心 2018年第1期159-164,共6页
针对小区居民用电数据挖掘效率低、数据量大等难题,进行了基于云计算和改进K-means算法的海量用电数据分析方法研究。针对传统K-means算法中存在初始聚类中心和K值难确定的问题,提出一种基于密度的Kmeans改进算法。首先,定义样本密度、... 针对小区居民用电数据挖掘效率低、数据量大等难题,进行了基于云计算和改进K-means算法的海量用电数据分析方法研究。针对传统K-means算法中存在初始聚类中心和K值难确定的问题,提出一种基于密度的Kmeans改进算法。首先,定义样本密度、簇内样本平均距离的倒数和簇间距离三者乘积为权值积,通过最大权值积法依次确定聚类中心,提高了聚类的准确率;然后,基于MapReduce模型实现改进算法的并行化,提高了聚类的效率;最后,以小区400户家庭用电数据为基础,进行海量电力数据的挖掘分析实验。以家庭为单位,提取出用户的峰时耗电率、负荷率、谷电负荷系数以及平段用电量百分比,建立聚类的数据维度特征向量,完成相似用户类型的聚类,同时分析出各类用户的行为特征。基于Hadoop集群的实验结果证明提出的改进K-means算法运行稳定、可靠,具有很好的聚类效果。 展开更多
关键词 用电数据 云计算 改进k-means算法 MAPREDUCE模型 并行化
下载PDF
基于改进的密度峰值算法的K-means算法 被引量:12
12
作者 杜洪波 白阿珍 朱立军 《统计与决策》 CSSCI 北大核心 2018年第18期20-24,共5页
针对传统K-means算法存在的随机选取初始聚类中心和类簇数目需要人为选定,从而导致聚类结果不稳定,容易陷入局部最优解的问题,文章提出了一种基于改进的密度峰值算法(DPC)的K-means算法,该算法首先采用改进的DPC算法来选取初始聚类中... 针对传统K-means算法存在的随机选取初始聚类中心和类簇数目需要人为选定,从而导致聚类结果不稳定,容易陷入局部最优解的问题,文章提出了一种基于改进的密度峰值算法(DPC)的K-means算法,该算法首先采用改进的DPC算法来选取初始聚类中心,弥补了K-means算法初始聚类中心随机选取导致易陷入局部最优解的缺陷;其次运用K-means算法进行迭代,并且引入熵值法计算距离优化聚类。在UCI数据集上的实验表明,该算法得到较好的初始聚类中心和较稳定的聚类结果,并且收敛速度也较快,证明了该算法的可行性。 展开更多
关键词 k-means算法 改进的DPC算法 聚类 熵值法 初始聚类中心 优化聚类
下载PDF
基于改进的K-means聚类算法的分类评价方法 被引量:6
13
作者 陈德军 罗金成 张兵 《武汉理工大学学报(信息与管理工程版)》 CAS 2011年第1期32-35,共4页
针对学术期刊运行与管理中对审稿专家缺乏准确评价依据的问题,结合评价分析的需求和K-means聚类算法特点,提出了一种基于改进的K-means聚类算法的审稿专家分类评价方法,该方法通过研究初始聚类中心的选择和评价标准的量化、聚类维度的... 针对学术期刊运行与管理中对审稿专家缺乏准确评价依据的问题,结合评价分析的需求和K-means聚类算法特点,提出了一种基于改进的K-means聚类算法的审稿专家分类评价方法,该方法通过研究初始聚类中心的选择和评价标准的量化、聚类维度的选择和分类值大小的合理选择等问题,较为准确地解决了审稿专家的分类问题。经实例分析验证,该方法得到的结果是合理的,并具有很强的可操作性,为建立科学的审稿专家库和准确高质量地送审提供了科学的依据。 展开更多
关键词 改进k-means算法 聚类分析 审稿专家分类
下载PDF
基于改进流形距离的粗糙集k-means聚类算法 被引量:4
14
作者 欧慧 夏卓群 武志伟 《计算机工程与应用》 CSCD 北大核心 2016年第14期84-89,共6页
针对现有的基于流形距离的聚类算法对"绝对流形"数据集较"相对流形"数据集聚类效果佳和参数ρ在较大范围内变化时,聚类性能较差等问题,提出基于改进流形距离的粗糙集k-means聚类算法。该算法通过用属性划分和最大... 针对现有的基于流形距离的聚类算法对"绝对流形"数据集较"相对流形"数据集聚类效果佳和参数ρ在较大范围内变化时,聚类性能较差等问题,提出基于改进流形距离的粗糙集k-means聚类算法。该算法通过用属性划分和最大最小距离选择初始聚类中心,以改进的流形距离和粗糙集优化k-means,并结合终止判断条件以达到解决边界数据聚类问题和提升聚类效果的目的。仿真结果表明:该算法对"绝对流形"和"相对流形"数据集聚类效果均有较好改善,且参数变化对聚类性能影响较大。 展开更多
关键词 k-means算法 最大最小距离 改进流形距离 粗糙集 适应度函数
下载PDF
基于主成分分析和改进K-means算法的极轨气象卫星数据处理软件分型研究 被引量:4
15
作者 林曼筠 赵现纲 +1 位作者 皇甫大鹏 陈平 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第6期656-662,共7页
提出了一种基于主成分分析方法和改进K-means算法的气象软件分型方法,该方法利用软件运行时资源消耗情况来刻画软件运行特征和对软件分类.首先引入主成分分析方法对软件运行特征进行降维;然后采用改进K-means算法对气象数据处理软件进... 提出了一种基于主成分分析方法和改进K-means算法的气象软件分型方法,该方法利用软件运行时资源消耗情况来刻画软件运行特征和对软件分类.首先引入主成分分析方法对软件运行特征进行降维;然后采用改进K-means算法对气象数据处理软件进行分型;最后结合主成分分析结果解释各类软件运行特征的意义.提出了一套指标体系刻画软件,使用该指标体系可以判断极轨气象卫星数据处理的各类软件运行是否正常,通过实验证明,该方法的分类结果与实际情况相符.同时,该指标体系可作为优化软硬件资源分配和提高软件运行效率的依据. 展开更多
关键词 主成分分析 改进k-means算法 特征分析 相似度算法 指标体系
下载PDF
基于改进K-means算法的WSN簇头节点数据融合 被引量:4
16
作者 高红菊 刘艳哲 陈莎 《农业机械学报》 EI CAS CSCD 北大核心 2015年第S1期162-167,共6页
无线传感器网络数据融合能够减少节点能耗、延长网络生命周期,近年来受到了广泛关注。已有的应用于农业监测的空间数据融合算法多采用取平均值等方法将一定区域内监测到的数据融合成一个值。而农田环境监测具有监测范围广、监测点多、... 无线传感器网络数据融合能够减少节点能耗、延长网络生命周期,近年来受到了广泛关注。已有的应用于农业监测的空间数据融合算法多采用取平均值等方法将一定区域内监测到的数据融合成一个值。而农田环境监测具有监测范围广、监测点多、监测数据量大的特点,监测数据间除了冗余性还具有差异性,因此数据融合应该在消除冗余的同时保留数据的差异。针对农业监测的这一特点,提出在簇头节点应用聚类算法进行空间数据融合,通过聚类减少数据发送量,降低能耗;同时将差异较大的参量聚类到不同类别中以保留数据间的差异。此外,还提出了一种应用于WSN簇头节点的自适应改进K-means聚类算法,仿真结果表明,所提算法融合后的数据上传量比没有融合减少41.19%,消除了数据冗余;算法融合前后最大误差低于取平均值法误差的36%,保留了数据差异性。在没有明确误差要求时,该算法能够在尽量减少数据上传量的同时保持相对误差低于10%,避免了因聚类个数不当引起的巨大误差。而在有具体误差要求时,该算法融合前后的绝对误差严格低于要求误差。 展开更多
关键词 无线传感器网络 改进k-means算法 数据差异性 数据融合
下载PDF
基于改进型K-means聚类的温度插值算法 被引量:6
17
作者 杜景林 沈晓燕 《计算机工程与设计》 北大核心 2016年第11期2992-2998,共7页
针对K-means聚类算法对初始聚类中心敏感和易陷入局部最优解的缺点及初始聚类中心对聚类结果的影响,提出一种基于改进型K-means聚类和正交最小二乘法的RBFNN算法。利用改进型K-means聚类算法对输入样本数据进行聚类处理,自适应地确定RB... 针对K-means聚类算法对初始聚类中心敏感和易陷入局部最优解的缺点及初始聚类中心对聚类结果的影响,提出一种基于改进型K-means聚类和正交最小二乘法的RBFNN算法。利用改进型K-means聚类算法对输入样本数据进行聚类处理,自适应地确定RBFNN隐含层的初始参数,利用正交最小二乘法求隐含层权值,建立RBFNN温度空间插值模型,用已有温度数据加以验证。实验结果表明,该算法能够解决K-means聚类算法对初始聚类中心敏感和易陷入局部最优解的问题,具有较高的插值精度。 展开更多
关键词 改进k-means聚类算法 聚类中心 径向基神经网络 正交最小二乘法 温度插值
下载PDF
基于K-means和改进KNN算法的风电功率短期预测系统 被引量:5
18
作者 何建强 张玉萍 滕志军 《计算机测量与控制》 2022年第5期156-162,共7页
为提高风电功率短期预测的准确性,针对KNN(K-Nearest neighbor algorithm)算法在风电功率预测中的不足,提出了基于K-means和改进KNN算法的风电功率短期预测方法;利用K-means聚类方法确定风电历史样本的类别,对KNN算法中搜索相似历史样... 为提高风电功率短期预测的准确性,针对KNN(K-Nearest neighbor algorithm)算法在风电功率预测中的不足,提出了基于K-means和改进KNN算法的风电功率短期预测方法;利用K-means聚类方法确定风电历史样本的类别,对KNN算法中搜索相似历史样本集的方式进行了改进和优化,构建了预测模型,并采用C/S架构实现了预测系统的设计;该系统具有自修正功能,能够随着预测次数的增加,不断修正预测模型,逐渐降低预测的误差率;以吉林省某风电场历史数据为样本进行了仿真分析,结果显示该算法与其它算法相比平均绝对误差和均方根误差最大下降1.08%和0.48%,运算时间提升了5.45%,在风电功率超短期多步预测中具有推广应用价值。 展开更多
关键词 风电功率 预测 k-means聚类算法 改进KNN算法
下载PDF
一种改进樽海鞘群算法优化K-Means的小麦覆盖度提取方法 被引量:1
19
作者 王向 李月凤 +1 位作者 王震洲 张佳佳 《河北科技大学学报》 CAS 北大核心 2023年第4期356-367,共12页
针对K-Means算法对初始聚类中心的依赖性较高,容易出现局部最优停滞的问题,提出一种改进樽海鞘群算法优化K-Means的小麦覆盖度提取算法。首先,将小麦图像转换到HSV色彩空间;然后,用改进樽海鞘群算法进行全局寻优,以获得全局最优值作为K-... 针对K-Means算法对初始聚类中心的依赖性较高,容易出现局部最优停滞的问题,提出一种改进樽海鞘群算法优化K-Means的小麦覆盖度提取算法。首先,将小麦图像转换到HSV色彩空间;然后,用改进樽海鞘群算法进行全局寻优,以获得全局最优值作为K-Means算法的初始聚类中心,接着运用K-Means算法进行局部寻优,直到迭代完成;最终,输出经过分割的小麦图像。为了评估算法性能,使用12个基准函数对ISSA及其他智能优化算法进行对比测试,同时将改进樽海鞘群算法优化K-Means应用于小麦覆盖度提取。结果表明,ISSA算法在优化精度和收敛速度上均超越其他算法,鲁棒性也得到了显著提高。与其他算法相比,ISSA-K算法分割后的小麦图像纹理比较清晰,效果更佳,同时具有更加高效的优势,可用于小麦覆盖度的提取,具有较强的实用性。 展开更多
关键词 图像处理 k-means 改进樽海鞘群算法 HSV色彩空间 图像分割 小麦覆盖度提取
下载PDF
改进K-means算法的馈线线损计算 被引量:4
20
作者 张海林 李琳 夏传良 《软件导刊》 2019年第12期22-25,29,共5页
分析几种主要线损计算方法优缺点及线损分析中数据挖掘算法应用,提出基于线损时域特征指标和改进K-means算法的馈线线损计算方法。充分利用线损信号中的时域信息,获取线损信号中的平均线损率、线损率变异系数、线损率变化趋势等表征线... 分析几种主要线损计算方法优缺点及线损分析中数据挖掘算法应用,提出基于线损时域特征指标和改进K-means算法的馈线线损计算方法。充分利用线损信号中的时域信息,获取线损信号中的平均线损率、线损率变异系数、线损率变化趋势等表征线损信号的非平稳特征。使用该算法对区域889条馈线线损进行计算分析,取轮廓系数最大时对应的k值进行聚类分析,经过65次迭代得到8个聚类结果,其中第7类平均线损率高达33.5%,第5类线损率为17.8%,但线损率变化趋势达308。可以进一步对该类馈线上的用电客户负荷曲线进行跟踪分析,确定是否存在窃漏电行为。 展开更多
关键词 馈线线损 改进k-means算法 聚类分析 轮廓系数
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部