针对传统图像匹配算法存在误匹配率高和双目视觉测量精度低的问题,本文提出一种基于非线性扩散与高维改进加速鲁棒特征(modified-speeded up robust features,M-SURF)描述符的双目视觉测量方法。首先改进非线性扩散模型中的PM(Perona-Ma...针对传统图像匹配算法存在误匹配率高和双目视觉测量精度低的问题,本文提出一种基于非线性扩散与高维改进加速鲁棒特征(modified-speeded up robust features,M-SURF)描述符的双目视觉测量方法。首先改进非线性扩散模型中的PM(Perona-Malik)模型,使图像中边缘区域得以平滑而维持内部平坦区域不变,再将扩散后图像与原始图像进行差分运算,利用KAZE算法检测特征点;然后采用环形邻域构建描述符,在对Harr小波响应值进行叠加时,根据与其垂直方向响应值的正负号进行多区间划分,生成高维M-SURF描述符;最后采用Hamming距离匹配,利用随机采样一致性(random sample consensus,RANSAC)算法剔除误匹配并筛选出测量所需的匹配点对,根据平行双目视觉测量原理获取匹配点对的三维坐标即可完成测量。实验结果表明,本文提出算法的匹配正确率较传统KAZE算法提高24.09%,测量最小相对误差达到0.3756%,满足测量精度的要求。展开更多
在计算机辅助骨科手术系统中应用增强现实技术能帮助医生准确地定位患者的病灶部位,而视频图像的目标跟踪匹配是实现增强现实的关键技术。针对视频图像匹配中SURF(speed up robust features)特征点性能和匹配效率不足的问题,提出一种改...在计算机辅助骨科手术系统中应用增强现实技术能帮助医生准确地定位患者的病灶部位,而视频图像的目标跟踪匹配是实现增强现实的关键技术。针对视频图像匹配中SURF(speed up robust features)特征点性能和匹配效率不足的问题,提出一种改进的基于SURF特征点的FLANN(fast library for approximate nearest neighbors)匹配算法。提取SURF关键特征点,改进其描述符算子,使用改进的FLANN算法进行特征点匹配。通过实验分析比较改进与未改进算法的性能,结果表明该方法的稳定性及快速性较好,具有较强的鲁棒性。展开更多
文摘在计算机辅助骨科手术系统中应用增强现实技术能帮助医生准确地定位患者的病灶部位,而视频图像的目标跟踪匹配是实现增强现实的关键技术。针对视频图像匹配中SURF(speed up robust features)特征点性能和匹配效率不足的问题,提出一种改进的基于SURF特征点的FLANN(fast library for approximate nearest neighbors)匹配算法。提取SURF关键特征点,改进其描述符算子,使用改进的FLANN算法进行特征点匹配。通过实验分析比较改进与未改进算法的性能,结果表明该方法的稳定性及快速性较好,具有较强的鲁棒性。