期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
改进北方苍鹰算法在光伏阵列中应用研究 被引量:3
1
作者 李斌 郭自强 高鹏 《电子测量与仪器学报》 CSCD 北大核心 2023年第7期131-139,共9页
针对北方苍鹰优化算法(NGO)存在收敛精度低和易陷入局部最优等问题,提出一种改进北方苍鹰算法(INGO),并应用于光伏阵列故障诊断。首先,利用Circle映射、自适应权重因子和Levy飞行策略改进了北方苍鹰优化算法,结合高斯检测机制和混合核... 针对北方苍鹰优化算法(NGO)存在收敛精度低和易陷入局部最优等问题,提出一种改进北方苍鹰算法(INGO),并应用于光伏阵列故障诊断。首先,利用Circle映射、自适应权重因子和Levy飞行策略改进了北方苍鹰优化算法,结合高斯检测机制和混合核极限学习机(HKELM)搭建INGO-HKELM故障诊断模型。其次,将INGO算法与NGO、粒子群算法(PSO)、鲸鱼算法(WOA)在测试函数上进行比较,表明在寻优能力、稳定性等方面具有优越性。然后,分析不同运行状态下光伏阵列运行特征,提出一种5维故障特征向量,作为数据的输入。最后,将4种算法分别对HKELM的核参数进行优化并实现故障分类。结果表明,所提方法能够准确地检测出光伏组件发生的异常状态,INGO-HKELM模型准确率达到93.74%,验证了所提算法的有效性和可行性。 展开更多
关键词 改进北方苍鹰算法 光伏阵列 故障诊断 混合核极限学习机
下载PDF
改进北方苍鹰优化算法的收敛性及其性能对比分析
2
作者 郑新宇 李媛 刘晓琳 《计算机科学与探索》 CSCD 北大核心 2024年第12期3203-3218,共16页
针对北方苍鹰优化算法存在易陷入局部最优的问题,提出一种改进北方苍鹰优化算法(INGO)。在种群初始化阶段,引入佳点集方法映射到搜索空间,提高了种群的多样性以及避免了早熟;在位置更新阶段,加入鱼鹰局部勘探位置更新策略和自适应惯性... 针对北方苍鹰优化算法存在易陷入局部最优的问题,提出一种改进北方苍鹰优化算法(INGO)。在种群初始化阶段,引入佳点集方法映射到搜索空间,提高了种群的多样性以及避免了早熟;在位置更新阶段,加入鱼鹰局部勘探位置更新策略和自适应惯性权重因子,增强了全局勘探和局部开发能力同时提升算法的收敛速度和收敛精度;建立INGO算法的北方苍鹰捕猎过程Markov链模型,证明了全局收敛性。通过实验仿真与六种经典智能算法进行对比分析验证INGO算法的有效性,并对INGO算法进行收敛曲线和Wilcoxon秩和检验分析,实验结果表明INGO算法能够有效地避免陷入局部最优,具有较强的收敛精度和鲁棒性。为了进一步描述INGO算法的实际应用能力,将该算法成功应用于工程设计问题中,验证了INGO算法在实际应用中的有效性。 展开更多
关键词 改进北方苍鹰优化算法 佳点集 自适应惯性权重 马尔科夫链 收敛性分析
下载PDF
基于INGO-TCN-Attention的多特征短期负荷预测方法
3
作者 张晓虎 欧科宏 +1 位作者 游鑫 黄嘉懿 《电工技术》 2024年第19期17-22,共6页
针对人工神经网络参数随机初始化给短期电力负荷预测带来的不足,提出一种基于改进北方苍鹰算法(Improved Northern Goshawk Optimization,INGO)优化时间卷积神经网络(Temporal Convolutional Networks,TCN)融合注意力机制(Attention)的... 针对人工神经网络参数随机初始化给短期电力负荷预测带来的不足,提出一种基于改进北方苍鹰算法(Improved Northern Goshawk Optimization,INGO)优化时间卷积神经网络(Temporal Convolutional Networks,TCN)融合注意力机制(Attention)的短期负荷预测方法。首先采用多策略改进北方苍鹰算法,通过基准函数测试改进前后算法的性能,表明INGO算法具有更好的寻优能力。最后,引入INGO算法对TCN进行优化,建立INGO-TCN-Attention短期电力负荷预测模型。通过实例分析和实验对比,表明INGO-TCN-Attention模型的稳定性和预测精度均优于其他模型。 展开更多
关键词 改进北方苍鹰算法 时间卷积神经网络 注意力机制 短期负荷预测
下载PDF
基于INGO-SWGMN混合模型的超短期风速预测研究
4
作者 付文龙 章轩瑞 +2 位作者 张海荣 傅雨晨 刘兴韬 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期133-143,共11页
为提高超短期风速预测的精度,提出一种融合变分模态分解(VMD)、相空间重构、改进的北方苍鹰优化算法(INGO)和共享权重门控记忆网络(SWGMN)的超短期风速混合预测模型。首先,考虑到风速的强波动性会对预测带来不利影响,采用VMD对风速时间... 为提高超短期风速预测的精度,提出一种融合变分模态分解(VMD)、相空间重构、改进的北方苍鹰优化算法(INGO)和共享权重门控记忆网络(SWGMN)的超短期风速混合预测模型。首先,考虑到风速的强波动性会对预测带来不利影响,采用VMD对风速时间序列进行分解,得到一系列相对平稳的子序列。然后对各子序列分量进行相空间重构,得到相应的相空间矩阵。接着针对长短期记忆网络(LSTM)训练时间较长和权重参数较多的问题,提出一种SWGMN对各子序列分量建立预测模型。同时,为提高模型预测性能,提出一种INGO对SWGMN模型的两个超参数进行寻优,得到最优参数组合。最后累加各子序列预测值,得到最终风速预测结果。实验结果表明,在单步预测和多步预测中,所提方法的平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数R2分别为0.1828 m/s、0.2263 m/s、4.5481%、0.987和0.2429 m/s、0.3107 m/s、6.1113%、0.976,相较于传统方法具有更高的预测精度和预测效率。 展开更多
关键词 风速 预测 深度学习 变分模态分解 共享权重门控记忆网络 改进北方苍鹰优化算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部