期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于改进GA-BP算法的RFID天线参数优化方法
1
作者 杨文冬 杨建一 +1 位作者 孙浩强 南敬昌 《微波学报》 CSCD 北大核心 2024年第3期22-28,45,共8页
为了提高算法对天线参数的预测精度,提出了一种基于Adagrad优化器的改进遗传算法-反向传播(GA-BP)算法。通过在迭代过程中引入Adagrad优化器与阈值策略,对发生退化的种群最优个体的位置信息进行重新引导,解决了GA-BP算法局部寻优能力不... 为了提高算法对天线参数的预测精度,提出了一种基于Adagrad优化器的改进遗传算法-反向传播(GA-BP)算法。通过在迭代过程中引入Adagrad优化器与阈值策略,对发生退化的种群最优个体的位置信息进行重新引导,解决了GA-BP算法局部寻优能力不足等问题,大幅度减小了误差损失并且加快了收敛速度。利用该方法对射频识别(RFID)标签天线的印刷品质和电磁参数进行了建模与分析。结果表明,改进GA-BP算法在稳步搜索极值的同时可以避免陷入局部极值陷阱,在误差和收敛效率方面均优于传统的反向传播(BP)算法与GA-BP算法,能够得到较高的预测精度,实现了RFID标签天线印刷品质的优化控制以及S_(11)特征曲线的预测。相比于BP算法与GA-BP算法,改进GA-BP算法在用于优化RFID标签天线的印刷品质时,平均绝对误差分别降低了91.92%和85.64%。在电磁参数预测应用时,分别降低了13.77%和13.19%。 展开更多
关键词 通信技术 射频识别标签天线 改进遗传算法-反向传播算法 Adagrad优化器
下载PDF
用于能耗数据分析的改进并行BP算法 被引量:2
2
作者 周媛 宋海涛 蒋砚军 《计算机工程》 CAS CSCD 2012年第18期171-173,177,共4页
基于Map Reduce框架的传统BP神经网络算法收敛缓慢,训练易陷入局部极小点,使迭代次数过多,极大浪费资源。为此,提出并实现改进的并行BP算法,采用动态调节学习率、动量因子调整权重修正值,提升BP网络并行训练效率,利用预处理数据和最大... 基于Map Reduce框架的传统BP神经网络算法收敛缓慢,训练易陷入局部极小点,使迭代次数过多,极大浪费资源。为此,提出并实现改进的并行BP算法,采用动态调节学习率、动量因子调整权重修正值,提升BP网络并行训练效率,利用预处理数据和最大分类概率增强分类的准确性。实验结果表明,改进的并行算法能提高分类准确率,缩短近17/18的训练时间。 展开更多
关键词 神经网络 改进反向传播算法 MAP Reduce架构 并行 学习率 动量因子
下载PDF
改进型BP神经网络的2维PSD非线性校正 被引量:3
3
作者 林青松 杨孝敬 +1 位作者 王军晓 张聚伟 《激光技术》 CAS CSCD 北大核心 2012年第1期124-126,130,共4页
为了减少位置敏感传感器(PSD)的非线性的影响,分析了PSD的工作原理及其非线性成因,提出一种基于Levenberg-Morquardt算法改进的反向传播(BP)神经网络方法进行非线性修正,并进行了理论分析和MAT-LAB仿真比较。结果表明,改进的BP神经网络... 为了减少位置敏感传感器(PSD)的非线性的影响,分析了PSD的工作原理及其非线性成因,提出一种基于Levenberg-Morquardt算法改进的反向传播(BP)神经网络方法进行非线性修正,并进行了理论分析和MAT-LAB仿真比较。结果表明,改进的BP神经网络方法能有效地减少非线性影响,且相对传统的BP神经网络而言,收敛速度更快,使修正后的PSD器件在非线性区里获得与线性区近似的线性度。这一结果对PSD更好的应用是有帮助的。 展开更多
关键词 光学器件 位置敏感传感器 非线性修正 改进反向传播算法 Levenberg—Morquardt算法
下载PDF
基于模糊神经网络的电站燃煤锅炉结渣预测 被引量:14
4
作者 伍昌鸿 马晓茜 廖艳芬 《燃烧科学与技术》 EI CAS CSCD 北大核心 2006年第2期175-179,共5页
综合运用模糊数学和神经网络知识构建了一个模糊神经网络模型,用以预测电站燃煤锅炉的结渣特性.通过引入反映煤灰特性的4个常用指标以及反映锅炉运行情况的两个指标,使所建模型综合考虑了煤灰特性和锅炉运行因素对结渣的影响.以实际... 综合运用模糊数学和神经网络知识构建了一个模糊神经网络模型,用以预测电站燃煤锅炉的结渣特性.通过引入反映煤灰特性的4个常用指标以及反映锅炉运行情况的两个指标,使所建模型综合考虑了煤灰特性和锅炉运行因素对结渣的影响.以实际电厂燃煤锅炉为样本,基于改进的BP(back-propagation)算法对网络模型进行了训练.为验证模型的准确性,对7台电站燃煤锅炉的结渣特性进行预测,并将该模型与只考虑煤灰特性指标的常规 BP网络模型进行比较.验证结果表明,模糊神经网络模型的预测结果与实际相符,效果优于常规BP网络模型. 展开更多
关键词 模糊神经网络 锅炉 结渣 预测 改进误差反向传播算法
下载PDF
多温区电加热炉的PID神经网络控制 被引量:6
5
作者 袁朝辉 张慧 《计算机仿真》 CSCD 北大核心 2010年第12期176-179,185,共5页
研究温度控制对提高产品品质意义较大。多温区电加热炉具有强耦合、时变性等特点,针对多温区电加热炉要求动态品质好、控制精度高等特点,采用将PID控制融合入神经元网络的方法,比例元、积分元和微分元的存在,使得PID神经网络的控制系统... 研究温度控制对提高产品品质意义较大。多温区电加热炉具有强耦合、时变性等特点,针对多温区电加热炉要求动态品质好、控制精度高等特点,采用将PID控制融合入神经元网络的方法,比例元、积分元和微分元的存在,使得PID神经网络的控制系统响应快、超调小、无静差。采用改进的反向传播学习算法,在权值调整算法式中加入阻尼项,提高了算法收敛速度和学习速率,又不易产生振荡。在MATLAB环境下,用S函数编写算法进行仿真。仿真结果表明,PID神经网络达到较好的解耦效果,提高系统的抗干扰能力,改善了系统的动态品质,使多温区电加热炉温度控制系统的性能得到改善。 展开更多
关键词 神经元网络 改进反向传播学习算法 多温区电加热炉 炉温控制系统
下载PDF
基于神经网络的入侵检测系统的设计 被引量:1
6
作者 邹平辉 《微电子学与计算机》 CSCD 北大核心 2009年第8期240-242,共3页
为了克服传统误差反向传播算法收敛速度慢且容易陷入局部极小的问题,提出了一种改进的误差反向传播算法,并给出了一个基于神经网络的入侵检测系统的模型,阐述了该模型的设计思想.最后通过训练过程和检测过程对实验的结果进行了客观的分... 为了克服传统误差反向传播算法收敛速度慢且容易陷入局部极小的问题,提出了一种改进的误差反向传播算法,并给出了一个基于神经网络的入侵检测系统的模型,阐述了该模型的设计思想.最后通过训练过程和检测过程对实验的结果进行了客观的分析.分析结果表明:改进的误差反向传播算法运用于神经网络入侵检测漏检率和误报率都比较高,而且对未知类型的攻击,也有一定的检测效果,说明改进的误差反向传播算法在神经网络入侵检测方面具有很大的发展空间和应用前景. 展开更多
关键词 改进的误差反向传播算法 神经网络 入侵检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部