期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种流水线型ADC的时序改进技术研究
1
作者 岂飞涛 刘涛 +7 位作者 朱蓓丽 张琳 刘海南 滕瑞 李博 赵发展 罗家俊 韩郑生 《微电子学》 CAS 北大核心 2022年第2期217-222,共6页
对一种流水线型模数转换器(ADC)的时序电路进行了改进研究。改进时序延长了余量增益单元MDAC部分加减保持相位的时长,可以在不增加功耗与面积的情况下,将一种10位流水线型ADC在20 MS/s采样率下的有效位(ENOB)从9.3位提高到9.8位,量化精... 对一种流水线型模数转换器(ADC)的时序电路进行了改进研究。改进时序延长了余量增益单元MDAC部分加减保持相位的时长,可以在不增加功耗与面积的情况下,将一种10位流水线型ADC在20 MS/s采样率下的有效位(ENOB)从9.3位提高到9.8位,量化精度提高了5%;将该ADC有效位不低于9.3位的最高采样率从21 MS/s提高到29 MS/s,转换速度提高了35%。ADC的采样频率越高,改进时序带来的效果越显著。该项技术特别适用于高速高精度流水线型ADC,也为其他结构ADC的高速高精度设计提供思路。 展开更多
关键词 流水线模数转换器 改进型时序 高速高精度
下载PDF
基于改进型因果时序网络的微电网故障诊断方法 被引量:9
2
作者 杨帆 张琰骏 《国外电子测量技术》 2019年第4期28-33,共6页
目前微电网多采用简单的过电流保护,因所处运行状态不同其故障电流变化范围大且电流衰减快速,致使故障诊断准确度降低。由于信号传递和继保设备误动失灵等原因,故障诊断系统会接收到错误的警报信息,这会降低微电网故障诊断的准确度,因此... 目前微电网多采用简单的过电流保护,因所处运行状态不同其故障电流变化范围大且电流衰减快速,致使故障诊断准确度降低。由于信号传递和继保设备误动失灵等原因,故障诊断系统会接收到错误的警报信息,这会降低微电网故障诊断的准确度,因此,提出一种基于改进型因果时序网络的微电网故障诊断方法来解决这一问题。通过微电网线路保护与断路器间的时序逻辑关系,辨别微电网故障警报信息的正误,对微电网进行故障诊断确定故障过程。通过仿真模型和设定案例结果可知,改进型因果时序网络故障诊断方法可以提高微电网的故障诊断准确度,该方法适应微电网孤岛及并网两种状态。 展开更多
关键词 微电网 故障诊断 改进因果时序网络 过电流保护
下载PDF
Study and Application of Fault Prediction Methods with Improved Reservoir Neural Networks 被引量:2
3
作者 朱群雄 贾怡雯 +1 位作者 彭荻 徐圆 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第7期812-819,共8页
Time-series prediction is one of the major methodologies used for fault prediction. The methods based on recurrent neural networks have been widely used in time-series prediction for their remarkable non-liner mapping... Time-series prediction is one of the major methodologies used for fault prediction. The methods based on recurrent neural networks have been widely used in time-series prediction for their remarkable non-liner mapping ability. As a new recurrent neural network, reservoir neural network can effectively process the time-series prediction. However, the ill-posedness problem of reservoir neural networks has seriously restricted the generalization performance. In this paper, a fault prediction algorithm based on time-series is proposed using improved reservoir neural networks. The basic idea is taking structure risk into consideration, that is, the cost function involves not only the experience risk factor but also the structure risk factor. Thus a regulation coefficient is introduced to calculate the output weight of the reservoir neural network. As a result, the amplitude of output weight is effectively controlled and the ill-posedness problem is solved. Because the training speed of ordinary reservoir networks is naturally fast, the improved reservoir networks for time-series prediction are good in speed and generalization ability. Experiments on Mackey–Glass and sunspot time series prediction prove the effectiveness of the algorithm. The proposed algorithm is applied to TE process fault prediction. We first forecast some timeseries obtained from TE and then predict the fault type adopting the static reservoirs with the predicted data.The final prediction correct rate reaches 81%. 展开更多
关键词 Fault prediction Time series Reservoir neural networks Tennessee Eastman process
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部