近年来,随着人工智能领域技术的不断发展,人机交互领域吸引了更多学者的关注。研究表明由脑电图(electroencephalogram,EEG)提取的特征功率谱密度对于脑力负荷的变化比较敏感,但由于其维数过高,容易造成数据灾难。局部线性嵌入(locally ...近年来,随着人工智能领域技术的不断发展,人机交互领域吸引了更多学者的关注。研究表明由脑电图(electroencephalogram,EEG)提取的特征功率谱密度对于脑力负荷的变化比较敏感,但由于其维数过高,容易造成数据灾难。局部线性嵌入(locally linear embedding,LLE)是常用的非线性降维算法,该算法弥补了传统线性降维算法无法发现数据中非线性结构关系的不足。由于不同数据集中样本分布的稀疏程度和扭曲程度不同,在使用LLE对不同数据集进行降维时的最佳邻域参数也不同。利用样本点之间的欧氏距离和测地距离的关系量化了数据集的扭曲程度,自适应邻域参数的局部线性嵌入算法(variable k-locally linear embedding,VK-LLE)动态地调整每一个数据集的最佳邻域参数,解决了样本分布扭曲程度不同对降维效果造成的干扰。实验结果表明,经过VK-LLE降维后的数据使用支持向量机(support vector machine,SVM)分类精度普遍高于经过传统LLE的降维后再使用SVM分类的精度,对复杂数据集有更强的适应能力。展开更多
函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成...函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。展开更多
杂草精准识别是实现农药定向定量喷洒的基础,是精准农业重要的研究课题之一,对环境保护和生产成本控制都有着重要的现实意义。该文以玉米田间常见杂草为研究对象,首先通过超绿特征去除田间复杂背景的影响,然后采用形态学方法自动分割图...杂草精准识别是实现农药定向定量喷洒的基础,是精准农业重要的研究课题之一,对环境保护和生产成本控制都有着重要的现实意义。该文以玉米田间常见杂草为研究对象,首先通过超绿特征去除田间复杂背景的影响,然后采用形态学方法自动分割图像中绿色植物区域作为待判别为杂草或作物的识别对象,之后采用基于Fisher投影的监督LLE(locally linear embedding)方法对样本的高维灰度特征进行降维,在低维空间结合支持向量机实现了杂草的快速识别。试验结果表明,该识别方法能更好地发现杂草与玉米的低维特征,对杂草和玉米植株的平均识别率分别达到97.2%和77.8%。该研究结果可为精准喷洒除草剂的自动化实现提供参考。展开更多
随着工业过程日趋复杂,系统安全及产品质量的在线监控也变得日益重要。针对化工过程的非线性特点,提出了一种新的基于局部线性嵌入(locally linear embedding,LLE)流形学习算法和支持向量数据描述(sup-port vector data description,SV...随着工业过程日趋复杂,系统安全及产品质量的在线监控也变得日益重要。针对化工过程的非线性特点,提出了一种新的基于局部线性嵌入(locally linear embedding,LLE)流形学习算法和支持向量数据描述(sup-port vector data description,SVDD)的故障检测方法。首先,使用LLE提取高维数据的低维子流形,进行维数约减,以保存更多原有系统的非线性特性,通过局部线性回归得到高维数据空间到低维特征空间的映射矩阵,保证了算法的实时性;然后,为了避免数据噪声的累加对传统统计量的影响,引入SVDD直接根据特征空间建立SVDD模型,构造统计量并确定其控制限;最后,通过数字仿真及Tennessee Eastman(TE)过程仿真研究验证了本文方法的有效性。展开更多
针对局部线性嵌入算法(Local Linear Embedding,LLE)短路、离群点影响大和结构信息缺乏等问题,提出基于Kernel Rank-order距离的重构权重局部线性嵌入算法(Reconstruction weight Local Linear Embedding algorithm based on Kernel Ran...针对局部线性嵌入算法(Local Linear Embedding,LLE)短路、离群点影响大和结构信息缺乏等问题,提出基于Kernel Rank-order距离的重构权重局部线性嵌入算法(Reconstruction weight Local Linear Embedding algorithm based on Kernel Rank-order distance,KRLLE)。用核函数将样本点映射到高维使其更加线性可分,进而获得较好的近邻点集;计算重构权重系数进而得到加权重构权重,重构权重系数根据两点间相关性越大对重构贡献越大的特性来减小离群点的影响,并利用两点间的欧氏距离与测地线距离之比有效地将短路点排除在外;根据加权重构权重得到低维嵌入坐标。在ORL、Yale人脸库和MNIST手写体数据库上的实验表明,KRLLE对离群点具有更好的鲁棒性并且由于增加了结构信息,识别率得到了提高。展开更多
文摘近年来,随着人工智能领域技术的不断发展,人机交互领域吸引了更多学者的关注。研究表明由脑电图(electroencephalogram,EEG)提取的特征功率谱密度对于脑力负荷的变化比较敏感,但由于其维数过高,容易造成数据灾难。局部线性嵌入(locally linear embedding,LLE)是常用的非线性降维算法,该算法弥补了传统线性降维算法无法发现数据中非线性结构关系的不足。由于不同数据集中样本分布的稀疏程度和扭曲程度不同,在使用LLE对不同数据集进行降维时的最佳邻域参数也不同。利用样本点之间的欧氏距离和测地距离的关系量化了数据集的扭曲程度,自适应邻域参数的局部线性嵌入算法(variable k-locally linear embedding,VK-LLE)动态地调整每一个数据集的最佳邻域参数,解决了样本分布扭曲程度不同对降维效果造成的干扰。实验结果表明,经过VK-LLE降维后的数据使用支持向量机(support vector machine,SVM)分类精度普遍高于经过传统LLE的降维后再使用SVM分类的精度,对复杂数据集有更强的适应能力。
文摘函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。
文摘杂草精准识别是实现农药定向定量喷洒的基础,是精准农业重要的研究课题之一,对环境保护和生产成本控制都有着重要的现实意义。该文以玉米田间常见杂草为研究对象,首先通过超绿特征去除田间复杂背景的影响,然后采用形态学方法自动分割图像中绿色植物区域作为待判别为杂草或作物的识别对象,之后采用基于Fisher投影的监督LLE(locally linear embedding)方法对样本的高维灰度特征进行降维,在低维空间结合支持向量机实现了杂草的快速识别。试验结果表明,该识别方法能更好地发现杂草与玉米的低维特征,对杂草和玉米植株的平均识别率分别达到97.2%和77.8%。该研究结果可为精准喷洒除草剂的自动化实现提供参考。
文摘随着工业过程日趋复杂,系统安全及产品质量的在线监控也变得日益重要。针对化工过程的非线性特点,提出了一种新的基于局部线性嵌入(locally linear embedding,LLE)流形学习算法和支持向量数据描述(sup-port vector data description,SVDD)的故障检测方法。首先,使用LLE提取高维数据的低维子流形,进行维数约减,以保存更多原有系统的非线性特性,通过局部线性回归得到高维数据空间到低维特征空间的映射矩阵,保证了算法的实时性;然后,为了避免数据噪声的累加对传统统计量的影响,引入SVDD直接根据特征空间建立SVDD模型,构造统计量并确定其控制限;最后,通过数字仿真及Tennessee Eastman(TE)过程仿真研究验证了本文方法的有效性。
文摘针对局部线性嵌入算法(Local Linear Embedding,LLE)短路、离群点影响大和结构信息缺乏等问题,提出基于Kernel Rank-order距离的重构权重局部线性嵌入算法(Reconstruction weight Local Linear Embedding algorithm based on Kernel Rank-order distance,KRLLE)。用核函数将样本点映射到高维使其更加线性可分,进而获得较好的近邻点集;计算重构权重系数进而得到加权重构权重,重构权重系数根据两点间相关性越大对重构贡献越大的特性来减小离群点的影响,并利用两点间的欧氏距离与测地线距离之比有效地将短路点排除在外;根据加权重构权重得到低维嵌入坐标。在ORL、Yale人脸库和MNIST手写体数据库上的实验表明,KRLLE对离群点具有更好的鲁棒性并且由于增加了结构信息,识别率得到了提高。