应用中的各种因素可能造成数据缺失,影响后续任务的分析。因此,数据集缺失值的插补尤为重要。相比原本没有插补的处理,错误的插补值也会对分析造成更严重的偏差。针对这种情况,提出新的采用双重判别器的基于条件生成对抗插补网络(C-GAIN...应用中的各种因素可能造成数据缺失,影响后续任务的分析。因此,数据集缺失值的插补尤为重要。相比原本没有插补的处理,错误的插补值也会对分析造成更严重的偏差。针对这种情况,提出新的采用双重判别器的基于条件生成对抗插补网络(C-GAIN)的缺失值插补算法DDC-GAIN(Dual Discriminator based on C-GAIN)。该算法通过一个辅助判别器辅助主判别器判断预测值的真假,即根据一个样本的全局信息判断这个样本生成的真假,更注重特征之间的关系,以此估算预测值。在4个数据集上与5种经典插补算法进行对比实验,结果表明:同样条件下,DDC-GAIN算法在样本量较大时的均方根误差(RMSE)最低;在Default credit card数据集上缺失率为15%时,DDC-GAIN算法的RMSE比次优算法C-GAIN降低了28.99%。这说明利用辅助判别器帮助主判别器学习特征之间的关系是有效的。展开更多
强化学习用于序列决策问题上取得的成功越来越受到人们的重视,但是当使用高维状态作为输入时,仍然存在数据效率低下的问题。造成这个问题的原因之一是智能体难以从高维空间提取有效的特征。为了提高数据效率,论文提出一种适用于强化学...强化学习用于序列决策问题上取得的成功越来越受到人们的重视,但是当使用高维状态作为输入时,仍然存在数据效率低下的问题。造成这个问题的原因之一是智能体难以从高维空间提取有效的特征。为了提高数据效率,论文提出一种适用于强化学习任务的数据增强方法cGDA(cGANs-based Data Augment),该方法用条件生成对抗网络(cGANs)对环境的动态特性建模,以当前时刻的状态和动作作为条件生成模型的输入,输出下一时刻的状态作为增强数据。训练过程中使用真实数据和增强数据同时训练智能体,有效地帮助智能体从不同的数据中快速提取到有用的知识。在Atari100K基准上,cGDA在26个离散控制问题环境中与采用数据增强的方法比较,在16个环境中获得了更高的性能;与未采用数据增强的方法比较,在14个环境中获得了更高的性能。展开更多
文摘应用中的各种因素可能造成数据缺失,影响后续任务的分析。因此,数据集缺失值的插补尤为重要。相比原本没有插补的处理,错误的插补值也会对分析造成更严重的偏差。针对这种情况,提出新的采用双重判别器的基于条件生成对抗插补网络(C-GAIN)的缺失值插补算法DDC-GAIN(Dual Discriminator based on C-GAIN)。该算法通过一个辅助判别器辅助主判别器判断预测值的真假,即根据一个样本的全局信息判断这个样本生成的真假,更注重特征之间的关系,以此估算预测值。在4个数据集上与5种经典插补算法进行对比实验,结果表明:同样条件下,DDC-GAIN算法在样本量较大时的均方根误差(RMSE)最低;在Default credit card数据集上缺失率为15%时,DDC-GAIN算法的RMSE比次优算法C-GAIN降低了28.99%。这说明利用辅助判别器帮助主判别器学习特征之间的关系是有效的。
文摘强化学习用于序列决策问题上取得的成功越来越受到人们的重视,但是当使用高维状态作为输入时,仍然存在数据效率低下的问题。造成这个问题的原因之一是智能体难以从高维空间提取有效的特征。为了提高数据效率,论文提出一种适用于强化学习任务的数据增强方法cGDA(cGANs-based Data Augment),该方法用条件生成对抗网络(cGANs)对环境的动态特性建模,以当前时刻的状态和动作作为条件生成模型的输入,输出下一时刻的状态作为增强数据。训练过程中使用真实数据和增强数据同时训练智能体,有效地帮助智能体从不同的数据中快速提取到有用的知识。在Atari100K基准上,cGDA在26个离散控制问题环境中与采用数据增强的方法比较,在16个环境中获得了更高的性能;与未采用数据增强的方法比较,在14个环境中获得了更高的性能。