期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
基于改进极限梯度提升算法的配电网合环转供电影响因素评估 被引量:1
1
作者 纪焕聪 夏成军 +2 位作者 赖胜杰 王泽青 刘祎峰 《南方电网技术》 CSCD 北大核心 2023年第6期18-25,共8页
合环电流大小与母线电压幅值差、相角差、环路阻抗等因素有关,而各因素重要程度不清晰,合环电流调控缺乏针对性。为此,提出一种基于改进极限梯度提升(extreme gradient boosting,XGBoost)算法的配电网合环转供电影响因素评估方法,以得... 合环电流大小与母线电压幅值差、相角差、环路阻抗等因素有关,而各因素重要程度不清晰,合环电流调控缺乏针对性。为此,提出一种基于改进极限梯度提升(extreme gradient boosting,XGBoost)算法的配电网合环转供电影响因素评估方法,以得出各影响因素的权重大小并采取针对性措施。首先,结合实际配电网的特点,确定影响合环电流大小的特征因素集;然后,基于PSCAD/EMTDC仿真软件搭建配电网合环模型,改变参数取值以获取大量样本数据;最后,利用XGBoost算法对样本数据进行训练,得出合环电流影响因素的权重排序。研究结果表明,各因素优先级排序为:母线电压相角差>环路阻抗>综合负荷大小>母线电压幅值差>综合负荷分布,按此制定相应的合环电流调控策略,实现配电网精细化管理,对电网调度运行具有一定的借鉴价值。 展开更多
关键词 改进极限梯度提升算法 合环电流 影响因素 权重分析
下载PDF
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用 被引量:2
2
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 PM_(2.5)质量浓度预测 改进灰狼算法(GWO) 梯度提升算法(GBDT) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
下载PDF
采用极限梯度提升算法的电力系统电压稳定裕度预测 被引量:9
3
作者 王慧芳 张晨宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第3期606-613,共8页
将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算... 将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算法的技术细节.在IEEE-39节点系统上进行验证,结果表明,XGBoost算法在R方值和平均绝对百分误差2项回归指标上均优于其他几类机器学习算法,且模型的计算速度最快,可以满足在线应用要求.同时,XGBoost算法具有良好的数值错误和数值缺失容错性,并可以针对预测偏差较大的样本进行数据补充,实现模型的更新,使得模型表现趋于稳定. 展开更多
关键词 电力系统 电压稳定性 机器学习 人工智能 极限梯度提升树(XGBoost)算法
下载PDF
基于加权正则化极限学习机与改进梯度投影法的谐波源定位
4
作者 沈清野 《山西电力》 2023年第4期13-18,共6页
针对配电网谐波源分布稀疏、监测装置少及定位难度高等特点,提出了采用基于加权正则化极限学习机与改进梯度投影法相结合的方法进行谐波源定位。具体的做法是,先构建系统量测节点的优化配置模型,采用模拟退火遗传算法进行求解,然后利用... 针对配电网谐波源分布稀疏、监测装置少及定位难度高等特点,提出了采用基于加权正则化极限学习机与改进梯度投影法相结合的方法进行谐波源定位。具体的做法是,先构建系统量测节点的优化配置模型,采用模拟退火遗传算法进行求解,然后利用从监测节点获取的量测数据构建基于加权正则化极限学习机的谐波源定位模型,确定含有谐波源的嫌疑节点,实现谐波源的定性分析,最后再采用改进梯度投影法求取嫌疑节点的谐波电流,完成谐波源的定量分析。仿真结果表明:采用加权正则化极限学习机与改进梯度投影法相结合的谐波源定位方法具有定位精度高、速度快的优点,有一定的推广价值。 展开更多
关键词 谐波源定位 改进梯度投影法 加权正则化极限学习机 模拟退火遗传算法
下载PDF
基于集成学习和改进粒子群优化算法的流程制造工艺参数优化 被引量:3
5
作者 刘孝保 严清秀 +2 位作者 易斌 姚廷强 顾文娟 《中国机械工程》 EI CAS CSCD 北大核心 2023年第23期2842-2853,共12页
针对流程制造过程中工艺过程复杂、多工序耦合严重、工艺参数优化困难等问题,提出一种基于长短期记忆(LSTM)神经网络、极限梯度提升(XGBoost)算法和改进粒子群优化(IPSO)算法的多工序工艺参数融合优化方法。基于LSTM神经网络建立了数据... 针对流程制造过程中工艺过程复杂、多工序耦合严重、工艺参数优化困难等问题,提出一种基于长短期记忆(LSTM)神经网络、极限梯度提升(XGBoost)算法和改进粒子群优化(IPSO)算法的多工序工艺参数融合优化方法。基于LSTM神经网络建立了数据预处理模型,通过LSTM神经网络提取流程工艺数据的时序特征,进而实现了对工艺数据中异常值的处理。在此基础上,通过XGBoost算法拟合工艺参数与质量指标间的非线性关系,并结合粒子群算法构建了PSO-XGBoost质量预测模型,再将预测模型的输出作为适应度,调用改进粒子群算法反向搜索全局最优工艺参数,得到各工序的最优工艺参数组合,从而实现了流程制造加工质量的融合优化。以某企业的一条流程生产线为例,验证了多工序工艺参数融合优化模型的有效性。 展开更多
关键词 流程制造 多工序工艺参数优化 改进粒子群优化算法 长短期记忆神经网络 极限梯度提升
下载PDF
多策略融合的改进黏菌算法及其应用 被引量:2
6
作者 卢万杰 陈子林 +2 位作者 付华 王志中 王久阳 《智能系统学报》 CSCD 北大核心 2023年第5期1060-1069,共10页
针对黏菌算法存在自适应能力有限,抗停滞能力弱等不足,提出多策略融合的改进黏菌算法。采用Bernoulli混沌初始化,丰富种群多样性,提升算法优化精度和收敛速度;提出动态非线性递减策略,动态调节黏菌个体探索幅度,协调并优化算法全局搜索... 针对黏菌算法存在自适应能力有限,抗停滞能力弱等不足,提出多策略融合的改进黏菌算法。采用Bernoulli混沌初始化,丰富种群多样性,提升算法优化精度和收敛速度;提出动态非线性递减策略,动态调节黏菌个体探索幅度,协调并优化算法全局搜索与局部开发能力;结合麻雀算法的预警机制与折射反向学习策略,优化黏菌个体分离觅食过程,防止前期优质个体流失以及后期种群多样性匮乏,提升算法整体抗停滞能力。通过对基准测试函数及部分CEC2017测试函数进行寻优对比实验,测试结果表明改进算法具有更好的寻优精度、稳定性。利用改进算法优化XGBoost参数并将其用于变压器故障诊断,进一步验证了改进策略的有效性及算法的工程实用性。 展开更多
关键词 智能优化算法 黏菌算法 麻雀算法 多策略融合 改进黏菌算法 极致梯度提升 变压器故障诊断 基准测试函数
下载PDF
基于改进GWO-LightGBM的磨煤机故障预警方法研究 被引量:1
7
作者 陈思勤 周浩豪 茅大钧 《自动化仪表》 CAS 2024年第2期106-110,115,共6页
为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改... 为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改进GWO算法优化模型超参数,以提高算法效率和性能。试验结果表明,改进GWO-LightGBM算法相比支持向量机(SVM)等传统算法具有更高的精度和更优的泛化能力。通过实际故障案例证明,该方法能够提前2 h对磨煤机进行早期故障预警。该方法对燃煤电厂磨煤机安全运维具有指导意义。 展开更多
关键词 燃煤电厂 磨煤机 故障预警 改进灰狼优化算法 轻量级梯度提升 滑动窗口法 Halton
下载PDF
基于α-shape与SSA-XGBoost算法的无人机点云孔洞修补
8
作者 宋晓辉 吕富强 +2 位作者 窦彩英 唐诗华 党梦鑫 《海洋测绘》 CSCD 北大核心 2024年第4期69-73,共5页
针对极限梯度提升树算法在进行无人机点云孔洞修补时核心超参数难以选取、点云孔洞修补范围识别困难以及孔洞修补精度较低等问题,提出基于麻雀搜索算法优化极限梯度提升树的点云孔洞修补方法。首先利用α-shape算法进行点云的孔洞识别,... 针对极限梯度提升树算法在进行无人机点云孔洞修补时核心超参数难以选取、点云孔洞修补范围识别困难以及孔洞修补精度较低等问题,提出基于麻雀搜索算法优化极限梯度提升树的点云孔洞修补方法。首先利用α-shape算法进行点云的孔洞识别,在此基础上,获取点云孔洞和周围点云的位置信息并将其作为模型的输入样本。再利用麻雀搜索算法优化极限梯度提升树算法中的核心超参数,构建SSA-XGBoost点云孔洞修补模型,并将该模型应用于无人机点云孔洞的修补中。最后将SSA-XGBoost与XGBoost、BP神经网络两组算法进行预测精度的对比。实验结果表明:SSA-XGBoost模型的预测结果相较于其它两组对比算法预测精度更高,在点云孔洞修补方面具有一定的意义。 展开更多
关键词 摄影测量 孔洞修补 α-shape算法 麻雀搜索算法 极限梯度提升
下载PDF
一种融合极限学习机和改进烟花算法的混合式目标跟踪技术
9
作者 景平 董娜 景雪宁 《计算机与数字工程》 2021年第4期750-759,780,共11页
针对背景杂波干扰、目标外观形变导致的跟踪精度差的问题,论文提出了一种基于融合极限学习机和改进烟花算法的混合式目标跟踪技术(OSELM-FWA)。该技术在提取图片特征信息时,为了剔除冗余信息、保留边缘轮廓处的颜色信息,提出梯度稀疏矩... 针对背景杂波干扰、目标外观形变导致的跟踪精度差的问题,论文提出了一种基于融合极限学习机和改进烟花算法的混合式目标跟踪技术(OSELM-FWA)。该技术在提取图片特征信息时,为了剔除冗余信息、保留边缘轮廓处的颜色信息,提出梯度稀疏矩阵作为特征信息提取工具来提取图片的颜色特征信息;同时为了提高运动模型的预测精度,提出了一种改进烟花算法来生成候选目标样本,该算法不同于传统烟花算法采用固定不变的常量作为爆炸半径参数,而是在其基础上加入目标的运动速率量来调整烟花半径参量,而且为了控制烟花的多样性,该算法还根据烟花置信度方差的变化情况动态调整烟花的变异概率,将烟花的多样性维持在最优范围内;另外为了及时地更新目标外观模型,利用目标的置信度变化率来调整更新样本数目,随后运用在线极限学习机增量的学习相应数量的目标信息。最后,论文将该跟踪技术在标准数据集OTB上进行对比实验,通过实验得到该跟踪技术在处理复杂环境下的目标跟踪问题时,不仅兼顾跟踪的实时性而且拥有较高跟踪精度。 展开更多
关键词 目标跟踪 梯度稀疏矩阵 改进烟花算法 在线极限学习机
下载PDF
改进天牛须搜索算法的工控系统入侵检测 被引量:3
10
作者 汪祖民 田纪宇 王宝凤 《计算机工程与设计》 北大核心 2021年第8期2108-2114,共7页
为解决工控系统计算资源有限,但对入侵检测时间敏感、检测精度要求高的问题,提出一种将模型训练与检测分离的迁移训练方法。将分类算法预测模型的训练任务迁移到工控系统之外的计算设备,工控系统通过高速网络实时获得预测模型的更新并... 为解决工控系统计算资源有限,但对入侵检测时间敏感、检测精度要求高的问题,提出一种将模型训练与检测分离的迁移训练方法。将分类算法预测模型的训练任务迁移到工控系统之外的计算设备,工控系统通过高速网络实时获得预测模型的更新并将检测到的具有训练价值的样本上传。为使模型达到良好的检测效果,提出一种随机属性约束策略对天牛须搜索算法进行改进,利用改进后的天牛须算法对XGBoost分类算法进行参数寻优。实验结果表明,该方法检测率高、误报率低、检测速度快,适合工控系统入侵检测。 展开更多
关键词 迁移训练 天牛须搜索算法 极限梯度提升 随机属性约束 工业控制系统 入侵检测
下载PDF
应用XGBoost算法对森林地上生物量的机载LiDAR反演 被引量:5
11
作者 李洋 彭道黎 袁钰娜 《东北林业大学学报》 CAS CSCD 北大核心 2023年第5期106-112,129,共8页
为了探究机载LiDAR数据结合极端梯度提升(XGBoost)算法估算森林地上生物量的可行性和适用性,寻求更优的森林地上生物量的监测和估算模型的建模方法。根据125块地面样地调查数据和机载激光雷达提取的点云特征变量,结合根据皮尔森相关系... 为了探究机载LiDAR数据结合极端梯度提升(XGBoost)算法估算森林地上生物量的可行性和适用性,寻求更优的森林地上生物量的监测和估算模型的建模方法。根据125块地面样地调查数据和机载激光雷达提取的点云特征变量,结合根据皮尔森相关系数和递归特征消除筛选变量,采用多元线性回归(MLR)、随机森林(RF)、支持向量机(SVM)和极端梯度提升(XGBoost)算法,建立4种不同算法的地上生物量估测模型并进行对比分析。结果表明:在训练集中,RF模型表现最好(R_(MSE)=9.98 t·hm^(-2),R^(2)=0.93,M_(AE)=5.69 t·hm^(-2)),其次是XGBoost模型(R_(MSE)=10.80 t·hm^(-2),R^(2)=0.89,M_(AE)=7.24 t·hm^(-2));在测试集中,采用XGBoost算法建立的模型表现(R_(MSE)=12.20 t·hm^(-2),R^(2)=0.83,M_(AE)=8.30 t·hm^(-2))明显优于其他3种模型,XGBoost模型估测表现稳定且差异很小,MLR、RF和SVM模型在训练集和测试集的表现上都存在较大差异。 展开更多
关键词 极限梯度提升算法 机载激光雷达 森林地上生物量
下载PDF
基于改进XGBoost超参数优化的地下工程空调系统负荷预测 被引量:3
12
作者 冯增喜 陈海越 +2 位作者 王涛 赵锦彤 李诗妍 《计算机与现代化》 2023年第1期108-113,共6页
针对地下工程空调负荷难以精确预测的问题,提出一种基于天牛须搜索算法(Beetle Antennae Search,BAS)优化极限梯度提升算法(eXtreme Gradient Boosting,XGBoost)的负荷预测模型。该算法通过引入典型最优解引导机制优化常规BAS算法中的... 针对地下工程空调负荷难以精确预测的问题,提出一种基于天牛须搜索算法(Beetle Antennae Search,BAS)优化极限梯度提升算法(eXtreme Gradient Boosting,XGBoost)的负荷预测模型。该算法通过引入典型最优解引导机制优化常规BAS算法中的位置更新策略,同时采用线性递减策略对天牛的搜索步长进行修正,以实现更快达到全局最优点,提高收敛速度;并利用改进的BAS算法对XGBoost中的决策树个数、树的最大深度2个对模型预测精度有较大影响的超参数进行寻优,以获得XGBoost的最优参数组合,提高模型预测精度。最后,以某地下保障工程空调系统为研究对象,验证所提出的预测模型的有效性。 展开更多
关键词 地下工程 负荷预测 极限梯度提升 改进天牛须搜索算法
下载PDF
基于Elman神经网络算法的用户短期用电量预测 被引量:1
13
作者 余红平 《通信电源技术》 2023年第5期38-41,共4页
针对用户短期用电量预测能力低下的问题,提出了神经网络算法模型,实现用电预测系统的设计。用电预测评定的功能设计,通过完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)算法和经... 针对用户短期用电量预测能力低下的问题,提出了神经网络算法模型,实现用电预测系统的设计。用电预测评定的功能设计,通过完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)算法和经验模态分解(Empirical Mode Decomposition,EMD)信号对用电预测数据进行评估和计算,进而实现对用电预测终端、电网负荷的评定。采用双层极限梯度提升(Extreme Gradient Boosting,XGBoost)算法构建弱学习器,提取用电预测数据的特征变量,调用权重和增益完成特征选择,建立好预测模型后进行负荷预测。实验表明,在进行用电预测的精确度测试时,用电预测的准确度可达97%。 展开更多
关键词 用电预测 神经网络 负荷预测 极限梯度提升(XGBoost)算法 弱学习器
下载PDF
计及工况预测误差的主动配电网日前无功优化调度策略
14
作者 张旭 刘伯文 王怡 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第2期31-40,共10页
为解决工况预测误差较大时,日前无功优化调度方案优化效果不佳的问题,提出了计及工况预测误差的主动配电网日前无功优化调度策略。首先,使用轻量级梯度提升机算法建立日前工况功率预测模型;其次,考虑大规模高比例分布式电源接入主动配电... 为解决工况预测误差较大时,日前无功优化调度方案优化效果不佳的问题,提出了计及工况预测误差的主动配电网日前无功优化调度策略。首先,使用轻量级梯度提升机算法建立日前工况功率预测模型;其次,考虑大规模高比例分布式电源接入主动配电网,以调度时段内所有时间断面的多目标加权累加和为目标函数建立日前无功优化调度模型;最后,设计了一种变寻优粒子空间的改进引力搜索算法对日前无功优化调度模型进行求解,该算法根据历史工况预测误差评价指标调整寻优粒子空间各维度的上下限矩阵,从而抑制了当无功区域内工况预测误差较大时可控设备调度异常的缺陷。最后采用拓展的IEEE 33节点系统算例进行有效性验证。 展开更多
关键词 主动配电网 日前无功优化调度 工况预测 分布式电源 轻量级梯度提升 改进引力搜索算法
下载PDF
基于CNN和XgBoost的香蕉成熟度判别 被引量:1
15
作者 韩雪 张磊 +1 位作者 赵雅菲 王聪 《食品与机械》 CSCD 北大核心 2024年第4期127-135,178,共10页
目的:提高香蕉成熟度的判别准确率。方法:基于卷积神经网络和极限梯度提升算法建立香蕉成熟度的判别方法。先通过卷积神经网络提取香蕉图像特征,并采用全连接层网络和线性判别分析方法精简香蕉图像特征;通过贝叶斯优化算法优化极限梯度... 目的:提高香蕉成熟度的判别准确率。方法:基于卷积神经网络和极限梯度提升算法建立香蕉成熟度的判别方法。先通过卷积神经网络提取香蕉图像特征,并采用全连接层网络和线性判别分析方法精简香蕉图像特征;通过贝叶斯优化算法优化极限梯度提升算法超参数;将简化后的香蕉图像特征输入极限梯度提升算法,通过极限梯度提升算法对香蕉成熟度进行判别。结果:所提方法对香蕉成熟度的判别准确度为91.25%;与已有方法相比,所提方法对小数据量香蕉的成熟度判别准确率明显提高。结论:该方法可实现被测香蕉成熟度的准确判别,有助于仓库经理、出口商实时监测香蕉的成熟度状况。 展开更多
关键词 香蕉 成熟度判别 卷积神经网络 极限梯度提升算法 小数据量
下载PDF
基于考虑误差修正的非线性自适应权重组合模型的光伏发电功率预测 被引量:1
16
作者 陈德余 张玮 王辉 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第2期250-256,共7页
为了提高光伏电站光伏发电功率预测精度,解决极限梯度提升模型、长短期记忆模型2种传统单一模型及传统组合模型极限梯度提升-长短期记忆模型的光伏发电功率预测结果滞后、预测效果易突变、预测误差较大、线性拟合性较差等不足,基于极限... 为了提高光伏电站光伏发电功率预测精度,解决极限梯度提升模型、长短期记忆模型2种传统单一模型及传统组合模型极限梯度提升-长短期记忆模型的光伏发电功率预测结果滞后、预测效果易突变、预测误差较大、线性拟合性较差等不足,基于极限梯度提升算法、长短期记忆算法和线性自适应权重,提出一种考虑误差修正的非线性自适应权重极限梯度提升-长短期记忆模型进行光伏发电功率预测;分别使用极限梯度提升算法和长短期记忆算法训练得到2种单一模型,将2种单一模型的初步预测值和真实值组成新的训练数据集,利用神经网络算法训练所提出的模型,对2种单一模型的初步预测值分配自适应权重系数,并根据训练时所提出模型的预测值大小分段统计预测误差的分布,预测时根据所提出模型的预测值在预测结果的基础上累加误差均值从而进行误差修正,进一步提高所提出模型的预测精度;利用Python语言分别对所提出的模型、传统组合模型和2种传统单一模型在晴天、阴天和雨天的光伏发电功率预测性能进行仿真。结果表明:与极限梯度提升-长短期记忆模型、极限梯度提升模型、长短期记忆模型相比,所提出模型的均方根误差分别减小28.57%、 39.39%、 49.79%,平均绝对误差分别减小44.25%、 53.33%、 64.8%,决定系数分别增大1.43%、 2.38%、 3.34%,所提出的模型更有效地减小了传统单一模型的光伏发电功率预测误差,优化了传统组合模型的权重系数;3种天气条件下所提出模型的光伏发电功率预测误差相对最小且稳健性最强,验证了所提出模型的有效性。 展开更多
关键词 光伏发电 功率预测 自适应权重 误差修正 极限梯度提升算法 长短期记忆算法
下载PDF
基于概率建模的分层产液劈分方法
17
作者 辛国靖 张凯 +5 位作者 田丰 姚剑 姚传进 王中正 张黎明 姚军 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期109-117,共9页
传统产液劈分方法无法考虑层间干扰及注水井和邻井的影响,难以准确判断井下实际状况。同时,海上油田产液剖面测试成本高,常规的机器学习方法面临样本数量少的问题。基于此,提出一种基于贝叶斯神经网络和极限梯度提升算法的多层合采产液... 传统产液劈分方法无法考虑层间干扰及注水井和邻井的影响,难以准确判断井下实际状况。同时,海上油田产液剖面测试成本高,常规的机器学习方法面临样本数量少的问题。基于此,提出一种基于贝叶斯神经网络和极限梯度提升算法的多层合采产液劈分混合学习模型。概率方法可以识别预测中的不确定性,通过将神经网络与概率建模结合,进行分层产液数据分布特征挖掘,结合主控因素分析,混合学习算法可以实现小层产液量的准确预测,可以依据较少的数据获得更为稳健的模型。为验证所提方法的有效性,将其应用于实际油田某区块进行产液剖面预测。结果表明:相比KH劈分方法在计算中劈分系数固定,不会随着生产过程波动,所提出的方法可从历史数据中学习,预测精度达到87.9%,预测结果更加逼近真实单层产液量。 展开更多
关键词 多层合采 产液剖面预测 贝叶斯神经网络 极限梯度提升算法 小样本
下载PDF
基于集成学习的脱硫剂加入量预测方法
18
作者 方一飞 但斌斌 +3 位作者 吴经纬 容芷君 都李平 罗钟邱 《武汉科技大学学报》 CAS 北大核心 2024年第5期361-367,共7页
为解决铁水预脱硫过程中脱硫剂加入量控制问题,提出一种基于集成学习的脱硫剂加入量预测方法。首先,对原始数据进行预处理,将空值、重复值、0值以及不符合工艺规范的数据行删除,并使用LOF算法结合专家经验剔除异常值;其次,基于GBDT算法... 为解决铁水预脱硫过程中脱硫剂加入量控制问题,提出一种基于集成学习的脱硫剂加入量预测方法。首先,对原始数据进行预处理,将空值、重复值、0值以及不符合工艺规范的数据行删除,并使用LOF算法结合专家经验剔除异常值;其次,基于GBDT算法计算每个输入特征的重要性占比,进行特征筛选;最后,采用Optuna超参数自动寻优框架对预测模型调优,寻找最佳超参数组合,预测脱硫剂加入量。利用某钢厂铁水预处理过程中的实际生产数据,分别采用XGBoost、RF、GBDT以及LightGBM等方法构建预测模型并进行对比试验。其中XGBoost模型的拟合精度(R^(2))、均方根误差(RMSE)、平均绝对误差(MAE)以及平均绝对百分比误差(MAPE)分别为0.8962、198.245、119.726以及7.897%,相较于其它模型均是最优。 展开更多
关键词 脱硫剂加入量 铁水预脱硫 局部异常因子 Optuna算法 极限梯度提升
下载PDF
基于PCA-GA-XGBoost模型的吉林省水资源 承载力评价 被引量:2
19
作者 庞博文 李治军 《人民珠江》 2024年第4期98-106,共9页
为了提高水资源承载力评价的效率和准确性,提出了一种基于主成分分析(PCA)、遗传算法(GA)和极限梯度提升树(XGBoost)的指标评价模型。定义了以水资源、社会经济、生态环境为子系统的14项评价指标;采用主成分分析法对评价指标进行降维处... 为了提高水资源承载力评价的效率和准确性,提出了一种基于主成分分析(PCA)、遗传算法(GA)和极限梯度提升树(XGBoost)的指标评价模型。定义了以水资源、社会经济、生态环境为子系统的14项评价指标;采用主成分分析法对评价指标进行降维处理;基于梯度提升决策树对吉林省2011—2021年的水资源承载力进行评价分析,并利用遗传算法对极限梯度提升树中4个参数进行优化。结果表明:经主成分分析简化评价指标后,PCA-GA-XGBoost模型的相关系数等指标均优于GA-BP、GA-SVM、GA-XGBoost和XGBoost;2011—2021年吉林省水资源承载力位于0.192~0.724,为先上升后下降再上升趋势,承载力状况逐年改善;利用模型内置的特征值重要度排序功能,识别得出重要度最大的指标为每公顷化肥施用量(0.5307),是影响吉林省水资源承载力的关键因素。 展开更多
关键词 主成分分析 遗传算法 极限梯度提升 水资源承载力 吉林省
下载PDF
华北落叶松林立地因子提取及立地指数遥感估测
20
作者 李金恬 范文义 《东北林业大学学报》 CAS CSCD 北大核心 2024年第4期72-81,88,共11页
根据2019年Landsat8 OLI光学遥感数据和塞罕坝机械林场地区2020年森林资源二类清查数据以及临时样地数据,编制塞罕坝机械林场华北落叶松林立地指数表,并得到华北落叶松林小班立地指数。在小班尺度上获取影像的光谱、纹理、植被指数、线... 根据2019年Landsat8 OLI光学遥感数据和塞罕坝机械林场地区2020年森林资源二类清查数据以及临时样地数据,编制塞罕坝机械林场华北落叶松林立地指数表,并得到华北落叶松林小班立地指数。在小班尺度上获取影像的光谱、纹理、植被指数、线性变换、地形等6个种类59个特征,利用极限梯度提升算法(XGBoost)提取华北落叶松林小班林分因子信息估测立地指数。结果表明:遥感-立地因子特征立地指数估测模型的精度更高,准确度为0.877376,召回率为0.894318,精确率为0.926923,F_(1)值为0.908221。因此,在立地指数估测中,将多光谱遥感特征与立地因子提取相结合具有应用潜力。 展开更多
关键词 立地指数 华北落叶松林 Landsat8 OLI 极限梯度提升算法
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部